Hydrides can be roughly classified into three main types by the nature of bonding and structure:
In main group element hydrides electronegativity of an element respective to hydrogen determines the compound to be either of the first two types. An electropositive metal forms ionic hydrides whereas an electronegative element forms covalent hydrides; however some exceptions exist such as silane.
|
In ionic hydrides the hydrogen behaves as a halogen and obtains an electron from the metal to form a hydride ion (H-), thereby obtaining the stable electron configuration of helium or filling up the s-orbital. The other element is a metal more electropositive than hydrogen, usually one of the alkali metals or alkaline earth metals. The hydrides are called binary if they only involve two elements including hydrogen. Chemical formulae for binary ionic hydrides are either MH (as in LiH) or MH2 (as in MgH2). Gallium, indium, thallium and lanthanide hydrides are also ionic.
Their structures are purely crystalline.
They are prepared by reacting the element with hydrogen gas, under pressure if needed.
Ionic hydrides are usually used as reducing agents in synthetic chemistry, but they are too strongly basic and reactive to be used in pure form. Hydrides of lesser reactivity are more commonly used especially if the reaction can be carried out in water or organic solvents. Reduction by sodium borohydride (NaBH4) can be carried out in water. If a reactive hydride has to be used, the reduction will be carried out in a medium that readily dissolves the hydride ion without decomposition, for instance in liquid ammonia. Pure binary hydrides are still not often used even in those criteria. Lithium hydride is reduced in reactivity by forming lithium aluminium hydride[?] (often abbreviated as LAH) with aluminium chloride[?].
4 LiH + AlCl3 -----> LiAlH4 + 3 LiCl
Water itself cannot serve as a medium for pure ionic hydrides or LAH because the hydride ion is a stronger base than hydroxide. Hydrogen gas is liberated if the hydride is immersed. The liberation is a typical acid-base reaction.
H- + H2O ----> H2 (gas) + OH-
As the name suggests, the hydrogen is covalently bonded to more electronegative p-block (boron, aluminium and Group 4-7) elements and beryllium. Common compounds including hydrocarbons, ammonia and hydrazine could be considered as hydrides of carbon and nitrogen but the term is only used for collectively naming all hydrogen compounds of an element. Ammonia is never called nitrogen trihydride. The hydride nomenclature does not suffice to provide a unique name for each hydrocarbon. Choice of nomenclature, either as metal hydrides or in parallel to alkane, alkene and alkyne, mostly depends on the perspective of the scientist.
Covalent hydrides behave as molecules with the weak London forces and hence are volatile at room temperature and atmospheric pressure. Aluminum and beryllium hydrides are polymeric because of three center bond[?].
Properties of covalent hydrides vary individually.
The following is a list of main group hydride nomenclature:
The most fascinating among the three, their bonding nature vastly differs from element to element and changes according to external criteria such as temperature, pressure and electric current. Titanium and coinage metal hydrides are polymeric. Palladium hydride is not yet clearly considered a compound though it possibly forms Pd2H. The dihydrogen molecule (H2) shares electron with palladium in some yet unknown manner and hides itself within the spaces of the palladium metal crystal structure. Palladium absorbs up to 900 times its own volume of hydrogen at room temperatures and was therefore once thought as a means to carry hydrogen for vehicle fuel cells. Hydrogen gas is liberated proportional to the applied temperature and pressure but not to the chemical composition.
Various metal hydrides are currently being studied for use as a means of hydrogen storage in fuel cell-powered electric cars and batteries.
Examples:
Search Encyclopedia
|
Featured Article
|