I've begun a page on the classical treatment of tensors. I think the two treatments should remain separate but equal. Maybe they can even compete for clarity. Perhaps this page should have a brief introduction and then a branch to the two treatments.
Kevin Baas 2003.03.14
This will probably end up the usual physics way of defining tensors, in terms of objects whose components transform according to certain rules. There's also a usual mathematics way, which involves defining certain vector spaces and not worrying about any given components until bases are introduced. The covariant vectors, for instance, are the elements of a dual space. This has the advantage of letting us know what we are really working with, and I think we should come up with a way to at least fit it into the description. Ideas?
I'm trying to motivate it from a perspective that is a little easier to grasp in a conceptual way (ie. applied math), and then I was hoping to move to a more mathematical way of dealing with them. The problems I had in learning what they were were caused by not being able to understand how they could be used in a geometric fasion. If you would like to add a section that describes them from the other perspective, I think it would be highly informative! I encourage you to do so! Oh, also, its a real pain to type set tensors, any suggestions? --Gavin E. Mendel-Gleason
I had very much the opposite problem. :) I would love to give you a hand but I'm not sure how to fit a formal construction into the above sort of presentation. If you have any ideas, I would be happy to hear them! As for type-setting, you are doomed to a life of misery. ;) But wiki supports using triple apostrophes to bold, that might be a bit easier than using the strong tags. --JG
The current page describes a very classical approach to the subject which (fortunately) is starting to be replaced by differential geometry. This approach is still very popular in engineering mathematics however.
At any rate, my opinion is that the current page is both too specific and too complicated. A tensor, really, is just a linear operator taking elements from one linear space to another linear space (or to the same space). While indicial notation is necessary for computation, it obscures the fact that tensors are invariant with respect coordinate systems, and that is one reason why they are useful. For example, some state of stress in a solid should not depend on the observer.
Also, even engineers are coming to recognize that there is a useful distinction to be made between the linear operator and some matrix associated with the linear operator. Using indicial notation from the outset obscures this very important point. DMD
Not really a map between spaces, but a sort of generalized Cartesian product. Tell you what - I'll try rewriting the page on Tensor/Alternate page tomorrow, and we'll see what turns out best. :) -JG
Question: why is "Tensors" a top-level heading under Mathematics? Shouldn't it be part of a Differential Geometry section, or maybe even part of Linear Algebra?
Note to the person that has taken an interest in the Tensor page: The rest of that "bullshit" is useful for people that do things like keep your drinking water clean, design automobiles and airplanes, and, in short, get their hands dirty doing things that others may find intellectually distasteful. Since I have had enough of working with deformation tensors this morning (for a paper), I think I will go help a friend hang a sliding glass door...
That's what I tried to do on /Alternate, and it does define tensors of type (m,n) and sort of explain how they relate to indices. But it's not well written, and not much use to someone who doesn't know what a tensor is, in my opinion.
With all due respect, I do not think the mathematical treatment of tensors should be geared to people who will use it to keep my water clean, certainly not at the price of dealing with the 3d case on an index by index basis, hiding the concept of a determinant 10 ft. down. The algebraic treatment is the one most convenient, and the one most people I know of (math graduate
students) think of when they hear the word "tensor". Speaking of which: does anyone know how to do the tensor sign in HTML? It really hurt me not to do it. Before we do covariant and contravariant tensors it's way more important to do anti-symmetric tensors (again from a universal-properties POV): these are actually useful when dealing linear forms, like determinants. Sorry I didn't notice the /Talk, I'm fairly new here. We should probably decide what issues we want to cover, and how. However, anything which is linked from the front page of math should have no indices, even if it means there is a /Engineering[?] and /Math[?] sections...
Agreed, there isn't anything wrong with indicial notation, and it comes in handy for a lot of things. I find it really confusing, though, when tensors are presented based entirely on indices without the appropriate mathematical definitions - it turns them into collections of arbitrary definitions, and it is hard to see why for instance there is a difference between contravariant and covariant tensors. So I don't think the two approaches should be separated out, as they are referring to the same underlying object, and a decent presentation should really make it clear how. What I'd like done is what I did on /Alternate, but with someone good at math-writing having tweaked it to be more understandable. But now two people have said they like it as is, so maybe my standards are just wrong...
I don't know what to do about this mess, but here's a couple of ways to get a tensor product sign in HTML (neither very good). You'll have to edit the page to see how they are done.
Please use ⊗, my browser supports only the first. And <font> is non-standard HTML.
If we are going to use GIFs, we should have both a large form for the product between spaces and a small form for the product between elements. But how will this work when people are viewing the text at different sizes?
Right, and alt is important for blind people for example. The size issue of image formulas is elegantly solved by the math wiki software (which we should move towards anyway): http://www.mathcircle.org/cgi-bin/mathwiki.pl? --AxelBoldt
So are we going to change the nasty Ä things to ⊗ symbols? The latter is at least standards-conformant and should work on Netscape 6, Mozilla, Mac OS X, and other unicode-aware systems/applications. -- Taral
If we use alt, then ⊗ is the only way anyway, since it alt tags cannot contain <font> stuff. In my browser, lynx, it displays as (x), which is pretty good considering it works inside a text-console. Even seeing people like to use non-graphical browsers -- and I think I deserve being catered to.
Also, I've written sub-article about Tensor of modules over non-commutative rings. It should be fleshed out a bit, and I'm hoping I'll have the time.
I also prepared a place for a sub-article about wedge tensors, since this is an important quotient space of tensors. I'm sick of the fighting on the main Tensor page, so I'll try and flesh these out and let AxelBoldt move them around.
Oh, and somebody should mention useful theorems about commutation of ⊗ and *, associativity of ⊗ etc. We're also missing a general discussion of universal properties and how they help define structures.
I just checked the EB article on tensors, and it is an incomprehensible babbling about "functions that transform according to certain rules when coordinate systems are changed". We win :-)
There's a good old usenet thread that about tensors; maybe we can incorporate some of their examples: http://groups.google.com/groups?hl=en&threadm=D73us0.GsA%40Corp.Megatest.COM --AxelBoldt
I really don't think the intro with examples is that good an idea. It strongly breaks up the flow of the article, potentially confusing the readers by equating tensors and tensor fields before the two have been presented properly, and doesn't tell them anything that saying most quantities in physics and engineering are tensors, which it says anyways, wouldn't. (Btw, not all quantities are tensors - spinors aren't.)
PLethora of pages? WHy do we have:
Does "old" mean "no longer to be used"? In which case, no need -- page history keeps old versions.COuld we find better names, eg "Tensor (classical approach)", or even "Classical definition of tensors"? -- Tarquin 16:01 Apr 28, 2003 (UTC)
I'm very convinced that both treatments of tensors should be included. Why not? The modern treatement should ofcourse stay, because hey, it's the modern treatment.
However the classical treatment should also remain, because
I've begun a page on the classical treatment of tensors. I think the two treatments should remain separate but equal. Maybe they can even compete for clarity. Perhaps this page should have a brief introduction and then a branch to the two treatments.
Kevin Baas 2003.03.14
-btw, I welcome the idea of changing the names. I think we should transitionally keep the old names as links to the new ones so that people don't have the floor disappear beneath them.
Whatever a tensor is, I doubt that it is a 'compound Jacobian'.
Charles Matthews 18:23 29 Jun 2003 (UTC)
Problem is, a Jacobian is a derivative, in matrix form - and that has no connection with what a tensor is. Really. If you said 'compound matrix' that would say more, and be much less mistaken
Charles Matthews 08:56 30 Jun 2003 (UTC)
Charles Matthews 16:16 30 Jun 2003 (UTC)
OK, here's what I think we need:
Each article should have its own three steps:
-- Karada 16:22 30 Jun 2003 (UTC)
Ambitious. The current page tensor does a reasonable job. Throwing the intuition back on differentials: could be worse, certainly - if people don't comprehend dxÄdy from that, they are at least no worse off and not misled. But what about tensor fields? Well, I suppose the classical approach as defined jumps straight to those.
Charles Matthews 16:34 30 Jun 2003 (UTC)
Re Karada's program:
Something like this?
In tensor:
The Anome 16:57 30 Jun 2003 (UTC)
Also see Application of tensor theory in engineering science, which is just a skeleton. The Anome
OK, I think I've spotted a major problem with the previous structure, which is trying to go to tensor fields and differential geometry much too fast, without explaining elementary tensor concepts on the way. I've imported stuff from the PlanetMath treatment into the classical treatment which should go part way to sorting this: but the intro article also needs not to rush quite so fast: "tensor" is not the same as "tensor field" in general, although it is a useful shorthand and the most common use of tensors. -- The Anome 12:36 2 Jul 2003 (UTC)
The abstract treatment has also been reformatted: could someone proofread it please? -- The Anome
After all the bashing and editing, there isn't that much difference between the "component free" article (which refers to components, after launching with tensor products) and the "classical" one (which deals with tensor products as well as components) -- does anyone now want to have a stab at integrating them into a single technical article, starting with the "modern" classical approach and then generalizing to the abstract approach? -- The Anome 13:13 2 Jul 2003 (UTC)
Consider that, with respect to co-ordinates, the classical approach is serially monogamous, and the modern one is celibate until in the right frame (of mind?). Mutual comprehension is more likely than a unified point of view.
Charles Matthews 18:56 2 Jul 2003 (UTC)
Anome: See:
Well, it was a joke.
Charles Matthews 07:33 4 Jul 2003 (UTC)
I've been looking at /wiki/Wikipedia:Words_that_should_not_be_used_in_wikipedia_articles and I think the comments about the use of is there are worth bearing in mind. If we have to live with 'X says a tensor is this, and Y says a tensor is that', well, so be it. I think I've now got my head around Kevin's 'compound Jacobians' and if a field quantity does transform according to tensor maps formed from the (Jacobian) derivative, under change of co-ordinates, then the chances are that it is a tensor field. I find this circular (if it is said that tensors are this) - as before, the circularity is bound up with trying to get to tensor fields in one conceptual leap. Not only that, there seems to me still to be a category-mistake, in identifying the 'Jacobian' with the 'tensor'. I can see that saying that the intuition about tensors is one person's way of looking at it will always be a problem.
Does seem to me that the tensor page[?] is converging to a respectable NPOV, if only at cost: throwing technical development elsewhere. I'm now a bit concerned that multilinear algebra will have to take a tutorial strain it wasn't designed to do.
Charles Matthews 15:50 4 Jul 2003 (UTC)
I do not know the distinction between tensors and tensor fields. Also, the way I've learned tensors, that is, from the classical text (Synge's book), a tensor is defined by a coordinate-system transformation, which inextricably is defined by differentials. Indeed, it is intuitively obvious that the geometry of a continuous space can only be defined through the use of infinitesimals.
If there are, in fact, tensors which do not involve differentials, then they neccessarily belong to discrete spaces. Discrete space is a subset of continuous space. Thus the discrete case should be treated as a special case of the general space (because it is), not the other way around. I would also like to see how one can justify discrete 'squeezy-twisty things'. If none of this makes sense, then I do not understand what was intended by the implication that differentials are not intrinsic to the definition of tensors.
In any case, it seems clear that I am not the only one confused about the tensor-tensor field labels, or what sounds like a 'non-differential tensor'. There seems to be an intuitive gap somewhere that needs to be addressed. -- kevin baas
OK, I've restored your version at the old location, and moved the new one to Intermediate treatment of tensors. Please note that Synge's book and your understanding of tensors are not the only valid way of looking at things. -- The Anome 18:44 4 Jul 2003 (UTC)
You know, there really are vectors that aren't vector fields. If you want to make all vectors into translation-invariant vector fields, you can. Just the same for tensors and tensor fields. But the argument about continuous space is an intellectual vicious circle. It may be perfectly good on intuitive grounds - bootstrap arguments often are. But not good foundationally.
Charles Matthews 20:24 4 Jul 2003 (UTC)
The argument about continuous space is called logic. And yes, logic is an intellectual vicious circle. I disagree with the "not good foundationally". The argument is derived from "first principles". It also holds a posteri (or however you spell it). (I also disagree with you on the notion that bootstrap arguments are good on intuitive grounds. But that's irrelevant, because you are here meaning something different by "intuitive" than what I originally meant. I meant that the situation is straight-forward and can be seen without recourse to a technology.) However, the argument itself may be irrelevant, if I do not understand the distinction correctly, or if it is somehow mistated.
In any case, my intention was not to make an argument. Rather, it was to point out an obscurity, which still remains to be addressed. Could you please be more precise about the distinction between a tensor and a tensor field. I'm sure there is an important and canonical distinction. I would like to know what it is. -- Kevin Baas
Anome, thanks. I readily concede that Synge's book and my understanding of tensors are not the only valid way of looking at things. My purposes are purely pedagogical, and dogmatism and self-righteousness are the two worst enemies of pedagogy. -- Kevin Baas
When we stray away from Kevin's preferred approach to tensors, this seems not to add up. I think I'll confine myself to editing, when I can see some improvement to make. If someone feels they can criticise my edits for lack of NPOV or ignorance, they should go right ahead. As far as I can see a tensor field with constant entries is as good as a tensor, on flat space. Can't put it clearer than that. If you're not on flat space, you need something equivalent to what is written at tensor field, which depends on already having the tensor concept. As I wrote above, little point in arguing about intuitions not attached to groups of people who share them.
Charles Matthews 09:48 5 Jul 2003 (UTC)
This is still unclear to me. Do you mean that, by default, a tensor is simply a linear translation[?], or a basis? If not, how is it different? Again - I do not mean to get you upset. I simply want a straight-forward description. This means one that does not include "As far as I'm concerned..." or anything of the sort. -- Kevin Baas
The more I read about tensors, the more I realise that my previous understanding of tensors was somewhat simplistic. I'm currently reading Geometric Methods of Mathematical Physics by Bernard Schutz, and discussing this with friends.
Schutz says the following:
So there you have it! What could be simpler than that? Of course, the problem is that without a proper understanding of what a manifold, vector, one-form are, this is a completely opaque statement. However, at this point you are 57 pages into his book, so you should by then know what each of those are. The problem is that we don't have a 57 page Wikipedia article to precede the tensor article.
The trouble is, there are two extremes here:
What we need are some mathematical physicists to help out. -- The Anome
Search Encyclopedia
|
Featured Article
|