Encyclopedia > Metric tensor

  Article Content

Metric tensor

The metric tensor (see also metric), conventionally notated as <math>G</math>, is a 2-dimensional tensor (making it a matrix once a basis is chosen), that is used to measure distance and angle in a Riemannian geometry. The notation <math>g_{ij}</math> is conventionally used for the components of the metric tensor (that is, the elements of the matrix). (In the following, we use the Einstein summation convention).

The length of a segment of a curve parameterized by t, from a to b, is defined as:

<math>L = \int_a^b \sqrt{ g_{ij}dx^idx^j}</math>

The angle between two tangent vectors, <math>U</math> and <math>V</math>, is defined as:

<math>
\cos \theta = \frac{g_{ij}U^iV^j} {\sqrt{ \left| g_{ij}U^iU^j \right| \left| g_{ij}V^iV^j \right|}} </math>

To compute the metric tensor from a set of equations relating the space to cartesian space (gij = δij: see Kronecker delta for more details), compute the jacobian of the set of equations, and multiply (outer product) the transpose of that jacobian by the jacobian.

<math>G = J^T J</math>

Example Given a two-dimensional Euclidean metric tensor:

<math>G = \begin{bmatrix} 1 & 0 \\ 0 & 1\end{bmatrix}</math>

The length of a curve reduces to the familiar Calculus formula:

<math>L = \int_a^b \sqrt{ (dx^1)^2 + (dx^2)^2} </math>

Some basic Euclidean metrics Polar coordinates: <math>(x^1, x^2)=(r, \theta)</math>

<math>G = \begin{bmatrix} 1 & 0 \\ 0 & (x^1)^2\end{bmatrix}</math>

Cylindrical coordinates: <math>(x^1, x^2, x^3)=(r, \theta, z)</math>

<math>G = \begin{bmatrix} 1 & 0 & 0\\ 0 & (x^1)^2 & 0 \\ 0 & 0 & 1\end{bmatrix}</math>

Spherical coordinates: <math>(x^1, x^2, x^3)=(r, \phi, \theta)</math>

<math>G = \begin{bmatrix} 1 & 0 & 0\\ 0 & (x^1)^2 & 0 \\ 0 & 0 & (x^1\sin x^2)^2\end{bmatrix}</math>



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Canadian Music Hall of Fame

... 1982 Neil Young 1983 Glenn Gould 1986 Gordon Lightfoot 1987 The Guess Who[?] 1989 The Band 1990 Maureen Forrester[?] 1991 Leonard Cohen 1992 Ian and ...

 
 
 
This page was created in 45.7 ms