Encyclopedia > User:JohnOwens Orbital variables

  Article Content

User:JohnOwens/Orbital variables

< User:JohnOwens

From external pages How the variables are used (& re-used) on some of the pages I refer to.
Wikipedia:TeX markup

Mars Academy (http://www.marsacademy.com/orbmect/orbles1.htm)

Kind of cheesy name, but what the heck.

<math>F</math>force
<math>m_1, m_2</math>mass of objects 1 & 2
<math>G</math>gravitational constant
<math>d</math>distance (scalar)
<math>r</math>distance (scalar)
<math>\bar{r}</math>displacement (vector)
<math>\mu</math><math>G\,m_1</math>
<math>K_e</math>kinetic energy
<math>W</math>work
<math>P_e</math>potential energy
<math>F_g</math>gravitational force
<math>E</math>mechanical energy
<math>\bar{A}, \bar{B}</math>arbitrary vectors
<math>A, B</math>their magnitudes
<math>\alpha</math>the angle between <math>\bar{A}</math> and <math>\bar{B}</math>
<math>\beta</math>complement of α
<math>\bar{v}</math>velocity, <math>\bar{r}'</math>
<math>v</math>speed
<math>t</math>time
<math>k</math>specific mechanical energy
<math>\bar{p}</math>momentum
<math>\bar{L}</math>angular momentum
<math>\bar{h}</math>specific angular momentum, <math>{\bar{L} \over m}</math>
<math>\bar{a}, \bar{b}, \bar{c}</math>arbitrary vectors
<math>\bar{k}</math>vector constant of integration
<math>\gamma</math>angle between <math>\bar{r}</math> and <math>\bar{k}</math>
<math>p</math>semilatus rectum[?]
<math>a</math>semimajor axis
<math>c</math>(distance between foci)/2
<math>\mbox{d}</math>directrix[?] of a conic section
<math>x</math>distance between directrix and focus
<math>\theta</math>angle to <math>\bar{r}</math>
<math>e</math>eccentricity
<math>r_p, r_a</math>distance at periapsis and apoapsis
<math>v_p, v_a</math>velocity/speed at periapsis and apoapsis

World of Physics (http://scienceworld.wolfram.com/physics/Two-BodyProblem)

<math>m_1, m_2</math>mass of objects 1 & 2
<math>M</math><math>m_1 + m_2</math>
<math>\mathbf{r}_1, \mathbf{r}_2</math>radius of objects 1 & 2
<math>\mu</math>reduced mass <math>{m_1\,m_2 \over m_1 + m_2} \equiv {m_1\,m_2 \over M}</math>
<math>\mathbf{r}</math>displacement from body 1 to body 2, <math>\mathbf{r}_2 - \mathbf{r}_1</math>
<math>a</math>distance between bodies, <math>r_1 + r_2</math>
<math>G</math>gravitational constant
<math>\mathbf{h}</math>angular momentum per mass, <math>{\mathbf{L} \over m} \equiv {\mathbf{r} \times \mathbf{p} \over m} = {\mathbf{r} \times \mathbf{r'}}</math>
<math>h</math>magnitude of <math>\mathbf{h}</math>
<math>\theta</math>angle from arbitrary direction
<math>A</math>area
<math>t</math>time
<math>E</math>orbital energy
<math>\mathcal{E}</math>specific energy
<math>\mathbf{A}</math>Laplace-Runge-Lenz vector[?], <math>\mathbf{r'} \times \mathbf{h} - {G\,M\,\mathbf{r} \over r}</math>
<math>e</math>eccentricity
<math>v</math>velocity/speed
<math>p</math>semilatus rectum[?]
<math>u</math><math>{1 \over r}</math>
<math>B</math>arbitrary constant
<math>\theta_0</math>arbitrary constant
<math>a</math>semimajor axis
<math>\theta_0</math>argument of pericenter[?]
<math>a \equiv 2 E</math>
<math>b \equiv 2 G M m</math>
<math>c \equiv h^2 m</math>
<math>A(r) \equiv 2 \sqrt{a (a r^2 + b r - c)}</math>
<math>B(r) \equiv \ln{\left[b + 2 a r + A(r)\right]}</math>
<math>C(r) \equiv A(r) + b B(r)</math>



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
French resistance

... Air Service also sent agents to France. Because US and British governments did not always agree with him, Charles De Gaulle organized his own intelligence organization ...

 
 
 
This page was created in 40.4 ms