Encyclopedia > User:JohnOwens Orbital variables

  Article Content

User:JohnOwens/Orbital variables

< User:JohnOwens

From external pages How the variables are used (& re-used) on some of the pages I refer to.
Wikipedia:TeX markup

Mars Academy (http://www.marsacademy.com/orbmect/orbles1.htm)

Kind of cheesy name, but what the heck.

<math>F</math>force
<math>m_1, m_2</math>mass of objects 1 & 2
<math>G</math>gravitational constant
<math>d</math>distance (scalar)
<math>r</math>distance (scalar)
<math>\bar{r}</math>displacement (vector)
<math>\mu</math><math>G\,m_1</math>
<math>K_e</math>kinetic energy
<math>W</math>work
<math>P_e</math>potential energy
<math>F_g</math>gravitational force
<math>E</math>mechanical energy
<math>\bar{A}, \bar{B}</math>arbitrary vectors
<math>A, B</math>their magnitudes
<math>\alpha</math>the angle between <math>\bar{A}</math> and <math>\bar{B}</math>
<math>\beta</math>complement of α
<math>\bar{v}</math>velocity, <math>\bar{r}'</math>
<math>v</math>speed
<math>t</math>time
<math>k</math>specific mechanical energy
<math>\bar{p}</math>momentum
<math>\bar{L}</math>angular momentum
<math>\bar{h}</math>specific angular momentum, <math>{\bar{L} \over m}</math>
<math>\bar{a}, \bar{b}, \bar{c}</math>arbitrary vectors
<math>\bar{k}</math>vector constant of integration
<math>\gamma</math>angle between <math>\bar{r}</math> and <math>\bar{k}</math>
<math>p</math>semilatus rectum[?]
<math>a</math>semimajor axis
<math>c</math>(distance between foci)/2
<math>\mbox{d}</math>directrix[?] of a conic section
<math>x</math>distance between directrix and focus
<math>\theta</math>angle to <math>\bar{r}</math>
<math>e</math>eccentricity
<math>r_p, r_a</math>distance at periapsis and apoapsis
<math>v_p, v_a</math>velocity/speed at periapsis and apoapsis

World of Physics (http://scienceworld.wolfram.com/physics/Two-BodyProblem)

<math>m_1, m_2</math>mass of objects 1 & 2
<math>M</math><math>m_1 + m_2</math>
<math>\mathbf{r}_1, \mathbf{r}_2</math>radius of objects 1 & 2
<math>\mu</math>reduced mass <math>{m_1\,m_2 \over m_1 + m_2} \equiv {m_1\,m_2 \over M}</math>
<math>\mathbf{r}</math>displacement from body 1 to body 2, <math>\mathbf{r}_2 - \mathbf{r}_1</math>
<math>a</math>distance between bodies, <math>r_1 + r_2</math>
<math>G</math>gravitational constant
<math>\mathbf{h}</math>angular momentum per mass, <math>{\mathbf{L} \over m} \equiv {\mathbf{r} \times \mathbf{p} \over m} = {\mathbf{r} \times \mathbf{r'}}</math>
<math>h</math>magnitude of <math>\mathbf{h}</math>
<math>\theta</math>angle from arbitrary direction
<math>A</math>area
<math>t</math>time
<math>E</math>orbital energy
<math>\mathcal{E}</math>specific energy
<math>\mathbf{A}</math>Laplace-Runge-Lenz vector[?], <math>\mathbf{r'} \times \mathbf{h} - {G\,M\,\mathbf{r} \over r}</math>
<math>e</math>eccentricity
<math>v</math>velocity/speed
<math>p</math>semilatus rectum[?]
<math>u</math><math>{1 \over r}</math>
<math>B</math>arbitrary constant
<math>\theta_0</math>arbitrary constant
<math>a</math>semimajor axis
<math>\theta_0</math>argument of pericenter[?]
<math>a \equiv 2 E</math>
<math>b \equiv 2 G M m</math>
<math>c \equiv h^2 m</math>
<math>A(r) \equiv 2 \sqrt{a (a r^2 + b r - c)}</math>
<math>B(r) \equiv \ln{\left[b + 2 a r + A(r)\right]}</math>
<math>C(r) \equiv A(r) + b B(r)</math>



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Quadratic formula

... parabola described by the quadratic equation touches the x-axis in a single point.) If the discriminant is positive, then there are two different solutions x, both of ...

 
 
 
This page was created in 20.9 ms