<math>F</math> | force |
<math>m_1, m_2</math> | mass of objects 1 & 2 |
<math>G</math> | gravitational constant |
<math>d</math> | distance (scalar) |
<math>r</math> | distance (scalar) |
<math>\bar{r}</math> | displacement (vector) |
<math>\mu</math> | <math>G\,m_1</math> |
<math>K_e</math> | kinetic energy |
<math>W</math> | work |
<math>P_e</math> | potential energy |
<math>F_g</math> | gravitational force |
<math>E</math> | mechanical energy |
<math>\bar{A}, \bar{B}</math> | arbitrary vectors |
<math>A, B</math> | their magnitudes |
<math>\alpha</math> | the angle between <math>\bar{A}</math> and <math>\bar{B}</math> |
<math>\beta</math> | complement of α |
<math>\bar{v}</math> | velocity, <math>\bar{r}'</math> |
<math>v</math> | speed |
<math>t</math> | time |
<math>k</math> | specific mechanical energy |
<math>\bar{p}</math> | momentum |
<math>\bar{L}</math> | angular momentum |
<math>\bar{h}</math> | specific angular momentum, <math>{\bar{L} \over m}</math> |
<math>\bar{a}, \bar{b}, \bar{c}</math> | arbitrary vectors |
<math>\bar{k}</math> | vector constant of integration |
<math>\gamma</math> | angle between <math>\bar{r}</math> and <math>\bar{k}</math> |
<math>p</math> | semilatus rectum[?] |
<math>a</math> | semimajor axis |
<math>c</math> | (distance between foci)/2 |
<math>\mbox{d}</math> | directrix[?] of a conic section |
<math>x</math> | distance between directrix and focus |
<math>\theta</math> | angle to <math>\bar{r}</math> |
<math>e</math> | eccentricity |
<math>r_p, r_a</math> | distance at periapsis and apoapsis |
<math>v_p, v_a</math> | velocity/speed at periapsis and apoapsis |
<math>m_1, m_2</math> | mass of objects 1 & 2 |
<math>M</math> | <math>m_1 + m_2</math> |
<math>\mathbf{r}_1, \mathbf{r}_2</math> | radius of objects 1 & 2 |
<math>\mu</math> | reduced mass <math>{m_1\,m_2 \over m_1 + m_2} \equiv {m_1\,m_2 \over M}</math> |
<math>\mathbf{r}</math> | displacement from body 1 to body 2, <math>\mathbf{r}_2 - \mathbf{r}_1</math> |
<math>a</math> | distance between bodies, <math>r_1 + r_2</math> |
<math>G</math> | gravitational constant |
<math>\mathbf{h}</math> | angular momentum per mass, <math>{\mathbf{L} \over m} \equiv {\mathbf{r} \times \mathbf{p} \over m} = {\mathbf{r} \times \mathbf{r'}}</math> |
<math>h</math> | magnitude of <math>\mathbf{h}</math> |
<math>\theta</math> | angle from arbitrary direction |
<math>A</math> | area |
<math>t</math> | time |
<math>E</math> | orbital energy |
<math>\mathcal{E}</math> | specific energy |
<math>\mathbf{A}</math> | Laplace-Runge-Lenz vector[?], <math>\mathbf{r'} \times \mathbf{h} - {G\,M\,\mathbf{r} \over r}</math> |
<math>e</math> | eccentricity |
<math>v</math> | velocity/speed |
<math>p</math> | semilatus rectum[?] |
<math>u</math> | <math>{1 \over r}</math> |
<math>B</math> | arbitrary constant |
<math>\theta_0</math> | arbitrary constant |
<math>a</math> | semimajor axis |
<math>\theta_0</math> | argument of pericenter[?] |
<math>a \equiv 2 E</math> | |
<math>b \equiv 2 G M m</math> | |
<math>c \equiv h^2 m</math> | |
<math>A(r) \equiv 2 \sqrt{a (a r^2 + b r - c)}</math> | |
<math>B(r) \equiv \ln{\left[b + 2 a r + A(r)\right]}</math> | |
<math>C(r) \equiv A(r) + b B(r)</math> |
Search Encyclopedia
|
Featured Article
|