Redirected from Quaternions
·  1  i  j  k 
1  1  i  j  k 
i  i  1  k  j 
j  j  k  1  i 
k  k  j  i  1 
These products form the quaternion group of order 8, Q_{8}.
Unlike real or complex numbers, multiplication of quaternions is not commutative: ij = k, ji = k, jk = i, kj = i, ki = j, ik = j. The quaternions are an example of a skew field, an algebraic structure similar to a field except for commutativity of multiplication. In particular, multiplication is still associative and every nonzero element has a unique inverse. They form a 4dimensional associative algebra over the reals (in fact a division algebra) and contain the complex numbers, but they do not form an associative algebra over the complex numbers. The quaternions, along with the complex and real numbers, are the only finite dimensional skew fields over the field of real numbers.
The noncommutativity of multiplication has some unexpected consequences, among them that polynomial equations over the quaternions can have more solutions than the polynomial's degree indicates. The equation z^{2} + 1 = 0 for instance has the infinitely many quaternions z = bi + cj + dk with a^{2} + c^{2} + d^{2} = 1 as solutions.
The conjugate of the quaternion z = a + bi + cj + dk is defined as z^{*} = a  bi  cj  dk, and the absolute value of z is the nonnegative real number defined by z = √(zz^{*}) = √(a^{2} + b^{2} + c^{2} + d^{2}). Note that (wz)^{*}= z^{*}w^{*}, which is not in general equal to w^{*}z^{*}. The multiplicative inverse of the nonzero quaternion z can be conveniently computed as z^{1} = z^{*} / z^{2}.
By using the distance function d(z,w) = z  w, the quaternions form a metric space and the arithmetic operations are continuous. We also have zw = z w for all quaternions z and w. Using the absolute value as norm, the quaternions form a real Banach algebra.
As is explained in more detail in quaternions and spatial rotation, the multiplicative group of nonzero quaternions acts by conjugation on the copy of R^{3} consisting of quaternions with real part equal to zero: it is not hard to see that the conjugation by a unit quaternion (a quaternion of absolute value 1) with real part cos t is a rotation by an angle 2t, the axis of the rotation being the direction of the imaginary part. Quaternions are sometimes used in computer graphics (and associated geometric analysis) to represent rotations or orientations of objects in 3d space. The advantages are: non singular representation (compared with Euler angles[?] for example), more compact (and faster) than matrices.
The set of all unit quaternions forms a 3dimensional sphere S^{3} and a group (even a Lie group) under multiplication. S^{3} is the double cover of the group SO(3,R) of real orthogonal 3x3 matrices of determinant 1 since two unit quaternions correspond to every rotation under the above correspondence. The group S^{3} is isomorphic to SU(2), the group of complex unitary 2x2 matrices of determinant 1.
Let A be the set of quaternions of the form a + bi + cj + dk where a, b, c and d are either all integers or all rational numbers with odd numerator and denominator 2. The set A is a ring and a lattice. There are 24 unit quaternions in this ring and they are the vertices of a regular polytope[?] called {3,4,3} in Schlafli's notation.

Representing quaternions by matrices
There are at least two ways of representing quaternions as matrices, in such a way that quaternion addition and multiplication correspond to matrix addition and matrix multiplication. One is to use 2x2 complex matrices, and the other is to use 4x4 real matrices.
In the first way, the quaternion a + bi + cj + dk is represented as:
This representation has several nice properties:
In the second way, the quaternion a + bi + cj + dk is represented as:
b & a & c & d \\ d & c & a & b \\ c & d & b & a \end{pmatrix}</math>
In this representation, the conjugate of a quaternion corresponds to the transpose of the matrix.
Quaternions were discovered by William Rowan Hamilton in 1843. Hamilton was looking for ways of extending complex numbers (which can be viewed as points on a plane) to higher spatial dimensions. He could not do so for 3dimensions, but 4dimensions produce quaternions. According to a story he told, he was out walking one day with his wife when the solution in the form of equation i^{2} = j^{2} = k^{2} = ijk = 1 suddenly occurred to him; he then promptly carved this equation into the side of nearby Brougham bridge.
This involved abandoning the commutative law, a radical step for the time. Vector algebra and matrices were still in the future. Not only this, but Hamilton had in a sense invented the cross and dot products of vector algebra. Hamilton also described a quaternion as an ordered fourelement multiple of real numbers, and described the first element as the 'scalar' part, and the remaining three as the 'vector' part. If two quaternions with zero scalar parts are multiplied, the scalar part of the product is the negative of the dot product of the vector parts, while the vector part of the product is the cross product. But the significance of these was still to be discovered.
Hamilton proceeded to popularize quaternions with several books, the last of which, Elements of Quaternions, had 800 pages and was published shortly after his death.
Even by this time there was controversy about the use of quaternions. Some of Hamilton's supporters viciously opposed the growing fields of vector algebra and vector calculus (from developers like Oliver Heaviside and Willard Gibbs), maintaining that quaternions provided a superior notation. While this may be true in three dimensions plus time (i.e., spacetime), quaternions cannot be used in other dimensions (though other deriverative exist like Octonions and Clifford algebras for this). Their scientific recognition compared to vectors has therefore decreased over time. They are today still used in computer graphics and Plasma physics.
If F is any field and a and b are elements of F, one may define a fourdimensional unitary associative algebra over F by using two generators i and j and the relations i^{2} = a, j^{2} = b and ij = ji. These algebras are either isomorphic to the algebra of 2by2 matrices over F, or they are division algebras over F. They are called quaternion algebras[?].
See also: Octonion, Hypercomplex number, Division algebra
Search Encyclopedia
