9×9=81 | 9×8=72 | 9×7=63 | 9×6=54 | 9×5=45 | 9×4=36 | 9×3=27 | 9×2=18 |
8×8=64 | 8×7=56 | 8×6=48 | 8×5=40 | 8×4=32 | 8×3=24 | 8×2=16 | |
7×7=49 | 7×6=42 | 7×5=35 | 7×4=28 | 7×3=21 | 7×2=14 | ||
6×6=36 | 6×5=30 | 6×4=24 | 6×3=18 | 6×2=12 | |||
5×5=25 | 5×4=20 | 5×3=15 | 5×2=10 | ||||
4×4=16 | 4×3=12 | 4×2=8 | |||||
3×3=9 | 3×2=6 | ||||||
2×2=4 |
This table does not give the ones and zeros. That is because:
Adding a number to itself is the same as multiplying it by two. For example, 7+7=14, which is the same as 7×2.
Multiplication tables can define 'multiplication' operations for groups, fields, rings, and other algebraic systems.
The following table is an example of a multiplication table for the unit octonions (see octonion, from which this example is taken).
· | 1 | e1 | e2 | e3 | e4 | e5 | e6 | e7 |
1 | 1 | e1 | e2 | e3 | e4 | e5 | e6 | e7 |
e1 | e1 | -1 | e4 | e7 | -e2 | e6 | -e5 | -e3 |
e2 | e2 | -e4 | -1 | e5 | e1 | -e3 | e7 | -e6 |
e3 | e3 | -e7 | -e5 | -1 | e6 | e2 | -e4 | e1 |
e4 | e4 | e2 | -e1 | -e6 | -1 | e7 | e3 | -e5 |
e5 | e5 | -e6 | e3 | -e2 | -e7 | -1 | e1 | e4 |
e6 | e6 | e5 | -e7 | e4 | -e3 | -e1 | -1 | e2 |
e7 | e7 | e3 | e6 | -e1 | e5 | -e4 | -e2 | -1 |
Search Encyclopedia
|
Featured Article
|