Some authors omit the associativity requirement and define a division algebra to be an algebra D over a field such that for any element a in D and any non-zero element b in D there exists precisely one element x with a = bx and precisely one element y in D such that a = yb. In the remainder of this article, we will however assume associativity.
The prototypical example of a division algebra over the real numbers is given by the quaternions. Every field extension forms a division algebra over the ground field. There is no finite-dimensional division algebra over the complex numbers (except for the complex numbers themselves). The only finite-dimensional division algebras over the real numbers (up to algebra isomorphism) are:
See also: normed division algebra, division, division ring
Search Encyclopedia
|
Featured Article
|