Encyclopedia > Simple module

  Article Content

Simple module

In abstract algebra, a (left or right) module S over a ring R is called simple if it is not the zero module[?] and if its only submodules are 0 and S. Understanding the simple modules over a ring is usually helpful because they form the "building blocks" of all other modules in a certain sense.

If S is a simple module and f : ST is a module homomorphism, then f is either zero or injective. (Reason: the kernel of f is a submodule of S and hence is either 0 or S.) If T is also simple, then f is either zero or an isomorphism. (Reason: the image of f is a submodule of T and hence either 0 or T.) Taken together, this implies that the endomorphism ring of a simple module is a division ring.

Need examples, connection to semisimple modules



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Battle Creek, Michigan

... age is 35 years. For every 100 females there are 91.9 males. For every 100 females age 18 and over, there are 87.2 males. The median income for a household in the city ...

 
 
 
This page was created in 29.1 ms