Encyclopedia > Saturated hydrocarbon

  Article Content

Alkane

Redirected from Saturated hydrocarbon

Alkane is a term used in organic chemistry to denote a type of hydrocarbon, in which the molecule has the maximum possible number of hydrogen atoms, and so has no double bonds (they are saturated). The generic formula for non-cyclic alkanes is CnH2n+2; the simplest possible alkane is methane (CH4). Each C atom is hybridized sp3.

The atoms in alkanes with more than three carbon atoms can be arranged in multiple ways, forming different isomers. "Normal" alkanes have the most linear, unbranched configuration, and are denoted with an n.

Those alkanes, and their derivatives, with four or fewer carbons have non-systematic common names, established by long precedence.

methaneCH4
ethane
propane
n-butane
n-pentane[?]
n-hexane
n-heptane
n-octane

and so on . . . .

Branched alkanes have some non-systematic (or "trivial") names in common use, but there is also a systematic way of naming most such compounds, which starts from identifying the longest non-branched parent alkane in the molecule, counting up from one sequentially starting from the carbon involved in the most prominent functional group (or, more formally, attached to the collection of heteroatoms with highest priority according to some rules), and then numbering the side chains according to this sequence.

i-butane (or "isobutane")

is the only other C4 alkane isomer possible, aside from n-butane. Its formal name is 2-methylpropane.

Pentane, however, has two branched isomers, in addition to its strictly linear, normal form:


2,2-dimethylpropane

and


2-methylbutane

Physical properties

  • Alkanes are insoluble into water.

  • Alkanes's density is inferior to 1.

  • Melting point and boiling point increase with molecular weight.

  • At standard conditions[?] from CH4 to C4H10, alkanes are gazeous; From C5H12 to C17H36, they are liquids; And after C18H38, they are solids.

Chemical properties

  • Alkanes tend to be generally unreactive because the C-H and C-C single bonds are stable and hard to break.

Cracking propertie

This operation break huge molecules into smaller ones. This can be done by a thermic or a catalytic way. The cracking's mechanism is a homolytic breaking and so, there is formation of free radicals. This mechanism is relatively complex but we can say that there it form in great proportions a light alkane and a heavy alkene, and sometimes a deshydrogenation.

Here is an example of cracking with butane CH3-CH2-CH2-CH3

  • 1st possibility (48%): breaking is done on the CH3-CH2 bond.

CH3* / *CH2-CH2-CH3

after a certain number of steps, we will obtain an alkane and a alkene : CH4 + CH2=CH-CH3

  • 2nd possibility (38%): breaking is done on the CH2-CH2 bond.

CH3-CH2* / *CH2-CH3

after a certain number of steps, we will obtain an alkane and a alkene from different types : CH3-CH3 + CH2=CH2

  • 3rd possibility (14%): breaking of an C-H bond

after a certain number of steps, we will obtain an alkene and a dihydrogen gaz : CH2=CH-CH2-CH3 + H2

Halogenation reaction

R + X2 → RX + HX

This is the example of chloration of methane. This a really dangerous reaction that can leads to explosion.

1. Activation step : formation of two free radicals of Cl

Cl2 → Cl* / *Cl
catalysed with UV.

2. Initiation step (slow step) : an H atom is pulled off from methane

CH4 + Cl* → CH3+ + HCl

3. Propagation step :

CH3+ + Cl2 → CH3Cl + Cl*

4. Breaking step : recombinaison of two free radicals

  • Cl* and Cl*, or
  • R* and Cl*, or
  • CH3* and CH3*.

Combustion

R + O2 → CO2 + H2O

It is very exothermic reaction. But, if the quantity of O2 is insufficient, it can form a poison called carbon's monoxyde CO. Here is an example with methane :

CH4 + 2 O2 → CO2 + 2 H20

with less O2 :

CH4 + 3/2 O2 → CO + 2 H20

with lesser O2, there is a lighting flame :

CH4 + O2 → C + 2 H20

links

See also: cycloalkane, functional group



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Battle Creek, Michigan

... was featured in the T.C. Boyle novel The Road to Wellville[?] and the movie of the same name. As of the 2000 census, the city had a total population of 53,364. ...

 
 
 
This page was created in 32.9 ms