Encyclopedia > Riemann sum

  Article Content

Riemann sum

In mathematics, let it be supposed there is a function <math>f: D \rightarrow R</math> where <math>D, R \subseteq \mathbb{R}</math> and that there is a closed interval <math>I = [a,b]</math> such that <math>I \subseteq D</math>. If we have a finite set of points <math>\{x_0, x_1, x_2, \dots x_n\}</math> such that <math>a = x_0 < x_1 < x_2 \dots < x_n = b</math>, then this set creates a partition <math>P = \{[x_0, x_1), [x_1, x_2), \dots [x_n-1, x_n]\}</math> of <math>I</math>.

If <math>P</math> is a partition with <math>n \in \mathbb{N}</math> elements of <math>I</math>, then the Riemann sum of <math>f</math> over <math>I</math> with the partition <math>P</math> is defined as

<math>S = \sum_{i=1}^{n} f(y_i)(x_{i}-x_{i-1})</math>

where <math>x_{i-1} \leq y_i \leq x_i</math>. The choice of <math>y_i</math> is arbitrary. If <math>y_i = x_{i-1}</math> for all <math>i</math>, then <math>S</math> is called a left Riemann sum. If <math>y_i = x_i</math>, then <math>S</math> is called a right Riemann sum.

Suppose we have

<math>S = \sum_{i=1}^{n} b(x_{i}-x_{i-1})</math>

where <math>b</math> is the supremum of <math>f</math> over <math>[x_{i-1}, x_{i}]</math>; then <math>S</math> is defined to be an upper Riemann sum. Similarly, if <math>b</math> is the infimum of <math>f</math> over <math>[x_{i-1}, x_{i}]</math>, then <math>S</math> is a lower Riemann sum.

See also:



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Shoreham, New York

... and 6.9% have someone living alone who is 65 years of age or older. The average household size is 2.88 and the average family size is 3.11. In the village the ...

 
 
 
This page was created in 417.2 ms