Encyclopedia > Paul Cohen

  Article Content

Paul Cohen

Paul Joseph Cohen is an American mathematician, born: April 2, 1934, Long Branch, New Jersey, USA.

He is noted for inventing a technique called forcing which he used to show that neither the continuum hypothesis nor the axiom of choice can be proved from the standard Zermelo-Fraenkel axioms of set theory. In conjunction with the earlier work of Gödel, this showed that both these statements are independent of the Zermelo-Fraenkel axioms: they can be neither proved nor disproved from these axioms. For his efforts he won the Fields Medal.

This result is possibly the most famous non-trivial example illustrating Gödel's incompleteness theorem.

External link:



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Thomas a Kempis

... to all Christians is the supreme stress it lays upon Christ and the possibility of immediate communion with him and God. The references to medieval mistakes o ...

 
 
 
This page was created in 22.7 ms