Encyclopedia > Operator

  Article Content

Operator

In Mathematics, an operator is a symbol indicating an operation to be performed on one or more operands.

The following elementary binary/dyadic arithmetic operators are quite standard:

  • addition symbolized by '+' as in 1+1=2.
  • subtraction symbolized by '-' as in 2-1=1.
  • multiplication symbolized by '×' as in 2 × 3 = 6, or by simple juxtaposition as in xy for the product of x and y.
  • division symbolized by '/', '÷' or a horizontal line separating numerator from denominator as in 3/2=1.5 .
  • exponentiation nm by elevation of the exponent m above the base line. If the exponent m is a positive integer, then the exponent describes the number of factors (repeated multiplication)

Past these basic operations lie the hyper-n operators

  • hyper4, also known as tetration, superpower, superdegree, or powerlog.
    • hyper4 is symbolized by either a^^b or a(4)b, and is defined as a(4)b = a^(a^(...^a)) = a^(a^(b-1))).
    • hyper4 is symbolized by a (4) and is defined as a(4)b = ((a^a)^...)^a.
    • Only the former, hyper4, definition is technically a different operator, since the hyper4 operation can be reduced to exponentiated exponentiation (iterated exponentiation).
  • hyper5 = a^^^b = a(5)b = a(4)a(4)...a(4)
  • hyper6 = a^^^^b = a(6)b = a(5)a(5)...a(5)
  • ad infinitum[?].
These can be written equivalently using Knuth's up-arrow notation.

The hyper-n concept also extends into trinary/triadic operators.

  • addition = hy(a,1,b)
  • multiplication = hy(a,2,b)
  • exponentiation = hy(a,3,b)
  • hyper4 = hy(a,4,b)

Different branches of mathematics may extend the definitions of operators to represent analogous operations.

  • The concept of an addition operator '+' has been extended to cover addition of sets, vectors and matrices.
  • Multiplication of a vector by a particular matrix is a unary operator or transformation; it is common, and only a slight abuse of language, to say the matrix is the operator.
  • Operators for mathematical functions: '+' defines the sum f+g of two functions f and g by (f+g)(x)=f(x)+g(x); similar f-g, f*g, f/g, f^g. Additionally, other operators are possible, e.g., function composition: f o g = f(g) defined by (f(g))(x)=f(g(x)); convolution which is defined by an integral.
  • Differential operators such as d/dx (notationally equivalent forms are the n-th derivative dn/dx, Heaviside's Big D operator), the Laplacian, the divergence, the gradient, the curl, Sturn-Liouville operators, etc.
  • Integral operators of the form
<math>(Tf)(y)=\int_A f(x)k(x,y)\,dx</math>
including such things as the Fourier and Laplace transforms.
  • Operators of probability theory such as expectation, variance, covariance, etc.
  • Operators are a key part of the theory of quantum mechanics

Linear operators are those which satisfy the following conditions; take the general operator Q, and the constant a:

<math>Q(f(x)+g(x)) = (Qf)(x)+(Qg)(x)</math>
<math>(Qf)(ax) = a(Qf)(x)</math>
Such examples of linear operators are the differential and Laplace transforms.

This is a stub article and needs much work. May I suggest to those who considered moving it to "Mathematical operator" that "Operator (mathematics)" would be a better name. The reason for that is that mathematicians say "operator" without often putting the word "mathematical" in front of it.

See also:



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Aozora Bunko: Y

... Yowa[?] by Shin Makino'ichi[?] (November 12, 1896 - March 24, 1936) Yubi[?] by Toshiro Sasaki[?] Yubitoyubiwa[?] by Toshiro Sasaki[?] (April 14, 1900 - March 13, ...