Encyclopedia > Knuths up-arrow notation

  Article Content

Knuths up-arrow notation

Knuth's up-arrow notation is useful to represent very large numbers with iterated exponentiation. It works in a way similar to standard exponentiation. For example:

<math>2\uparrow\uparrow 3= 2^{(2^{2})}=2^{2^{2}} </math>

Generally:

<math>
\begin{matrix} x\uparrow y &=& x^y &=& x \times x \times x \times\cdots \left(\mbox{y times}\right) \\ x\uparrow\uparrow y &=& x\uparrow x\uparrow x\uparrow\ldots\left(\mbox{y times}\right) &=& x^{x^{x^{\cdots}}} \left(\mbox{y times}\right) \\ x\uparrow\uparrow\uparrow y &=& x\uparrow\uparrow x \uparrow\uparrow x \ldots\left(\mbox{y times}\right)&=&(x^{x^{x^{\cdots}}} \left(\mbox{y times}\right))^{(x^{x^{x^{\cdots}}} \left(\mbox{y times}\right))^{\cdots}} \end{matrix} </math>

Often instead of arrows, in strict ASCII, ^^ is used instead of ↑↑.

See also



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
U.S. presidential election, 1804

... Mate(Electoral Votes) Thomas Jefferson (W) 162 Democratic-Republican George Clinton (162) Charles C. Pinckney[?] 14 Federalist Rufus King (14) Other ...

 
 
 
This page was created in 48.6 ms