## Encyclopedia > Knuths up-arrow notation

Article Content

# Knuths up-arrow notation

Knuth's up-arrow notation is useful to represent very large numbers with iterated exponentiation. It works in a way similar to standard exponentiation. For example:

$2\uparrow\uparrow 3= 2^{(2^{2})}=2^{2^{2}}$

Generally:

$\begin{matrix} x\uparrow y &=& x^y &=& x \times x \times x \times\cdots \left(\mbox{y times}\right) \\ x\uparrow\uparrow y &=& x\uparrow x\uparrow x\uparrow\ldots\left(\mbox{y times}\right) &=& x^{x^{x^{\cdots}}} \left(\mbox{y times}\right) \\ x\uparrow\uparrow\uparrow y &=& x\uparrow\uparrow x \uparrow\uparrow x \ldots\left(\mbox{y times}\right)&=&(x^{x^{x^{\cdots}}} \left(\mbox{y times}\right))^{(x^{x^{x^{\cdots}}} \left(\mbox{y times}\right))^{\cdots}} \end{matrix}$

Often instead of arrows, in strict ASCII, ^^ is used instead of ↑↑.

All Wikipedia text is available under the terms of the GNU Free Documentation License

Search Encyclopedia
 Search over one million articles, find something about almost anything!

Featured Article
 Monaco Grand Prix ... (France) 1973 - Jackie Stewart[?], (United Kingdom) 1974 - Ronnie Peterson[?], (Sweden) 1975 - Niki Lauda, (Austria) 1976 - Niki Lauda, (Austria) 1977 - Jody ...