Encyclopedia > Knuths up-arrow notation

  Article Content

Knuths up-arrow notation

Knuth's up-arrow notation is useful to represent very large numbers with iterated exponentiation. It works in a way similar to standard exponentiation. For example:

<math>2\uparrow\uparrow 3= 2^{(2^{2})}=2^{2^{2}} </math>

Generally:

<math>
\begin{matrix} x\uparrow y &=& x^y &=& x \times x \times x \times\cdots \left(\mbox{y times}\right) \\ x\uparrow\uparrow y &=& x\uparrow x\uparrow x\uparrow\ldots\left(\mbox{y times}\right) &=& x^{x^{x^{\cdots}}} \left(\mbox{y times}\right) \\ x\uparrow\uparrow\uparrow y &=& x\uparrow\uparrow x \uparrow\uparrow x \ldots\left(\mbox{y times}\right)&=&(x^{x^{x^{\cdots}}} \left(\mbox{y times}\right))^{(x^{x^{x^{\cdots}}} \left(\mbox{y times}\right))^{\cdots}} \end{matrix} </math>

Often instead of arrows, in strict ASCII, ^^ is used instead of ↑↑.

See also



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Eurofighter

... Current orders for the participating nations are 232 for the United Kingdom, 180 for Germany, 121 for Italy, and 87 for Spain. An extensive overseas sales effort ...

 
 
 
This page was created in 45.4 ms