Encyclopedia > Knuths up-arrow notation

  Article Content

Knuths up-arrow notation

Knuth's up-arrow notation is useful to represent very large numbers with iterated exponentiation. It works in a way similar to standard exponentiation. For example:

<math>2\uparrow\uparrow 3= 2^{(2^{2})}=2^{2^{2}} </math>

Generally:

<math>
\begin{matrix} x\uparrow y &=& x^y &=& x \times x \times x \times\cdots \left(\mbox{y times}\right) \\ x\uparrow\uparrow y &=& x\uparrow x\uparrow x\uparrow\ldots\left(\mbox{y times}\right) &=& x^{x^{x^{\cdots}}} \left(\mbox{y times}\right) \\ x\uparrow\uparrow\uparrow y &=& x\uparrow\uparrow x \uparrow\uparrow x \ldots\left(\mbox{y times}\right)&=&(x^{x^{x^{\cdots}}} \left(\mbox{y times}\right))^{(x^{x^{x^{\cdots}}} \left(\mbox{y times}\right))^{\cdots}} \end{matrix} </math>

Often instead of arrows, in strict ASCII, ^^ is used instead of ↑↑.

See also



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Reformed churches

... in Britain and Ireland The churches with presbyterian traditions in the United Kingdom have the Westminster Confession of Faith[?] as one of their important confessional ...

 
 
 
This page was created in 59.3 ms