Redirected from Map making
Maps function as visualization tools for spatial data. Spatial data is acquired from measurement and can be stored in a database, from which it can be extracted for a variety of purposes. Current trends in this field are moving away from analog methods of mapmaking and toward the creation of increasingly dynamic, interoperable maps that can be manipulated digitally. The cartographic process rests on the premise that there is there is an objective reality and that we can make reliable representations of that reality by adding levels of abstraction.
History The oldest known map dates from the 5000s BC[?]. These more primitive maps emphasize topological relationships such as connectedness, adjacency and containment.
A major development in mapmaking occurred with the advent of geometry which was first used in Babylonia around 2300s BC[?]. The Egyptians later used geometry to survey land and to resurvey it after the periodic flooding of the Nile obscured the property borders.
The ancient Greeks added a great deal to the art and science of cartography. Strabo (c. 63 BCE - c CE 21) is credited as the father of geography because he wrote "Geographia" in which he documented and criticized the works of others (most of whom would not be known today had Strabo not mentioned them). Thales of Miletus thought that the earth was disk and was supported by water in around 600 BC. Anaximander of Miletus theorized that the earth was cylindrical also about the same time. In 288 BCE Aristarchus of Samos was the first to say that the sun was the center of universe (see heliocentric theory). And in approximately 250 BC Eratosthenes of Cyrene estimated the circumference of the earth to within 15% of the modern-day accepted value.
Pythagoras of Ionia, who was the founder of a mathematical cult that developed many number-based superstitions that later became the basis of mathematics, was the first notable person to say that the earth was a sphere. Aristotle later provided arguments in support of this idea. Those arguments can be summarized as follows:
During the middle ages of Europe church dogma prevailed over mathematics and science and scientific thinking was considered to be pagan. This was a major setback in the science of cartography. Most maps of the period were rectangular or circular and followed the style of the so-called "T and O map[?]." This world map represented the land as disk-shaped and surrounded by Ocean. The land on the map was divided into three parts by a T shape in which Asia occupied the top of the T area, Europe the bottom left and Africa the bottom right. Dogma also dictated that one son of Abraham colonized each division. The Chinese during this time were using a rectangular coordinate system which was far more accurate and useful.
The discovery of the West by Europeans and the subsequent effort to control and divide up those lands necessitated the invention of scientific mapping methods. This would end the use of the highly inaccurate T and O map. The trend of globalism that was started with the Age of Exploration[?] would continue during the Renaissance. This would, in turn, would eventually lead to the Enlightenment in which probability theory, a concern for accuracy, and a desire to classify the world would further develop scientific mapmaking. The concept of distribution, in which systems are characterized and analyzed, and ecological thinking, in which the interrelationships between objects are studied and predictions are made about future behavior, would revolutionize cartography in later centuries.
Advances in mechanical devices such as the printing press, quadrant[?] and vernier allowed for the mass production of maps and the ability to make accurate reproductions from more accurate data. Optical technology, such as the telescope, sextant and other devices that use telescopes, allowed for accurate surveying of land and the ability of mapmakers and navigators to find their latitude by measuring angles to the North Star at night or the sun at noon.
Advances in photochemical technology, such as the lithographic[?] and photochemical processes, have allowed for the creation of maps that have fine details, do not distort in shape and resist moisture and wear. This also eliminated the need for engraving which further shortened the time it takes to make and reproduce maps.
In the mid to late 20th century advances in electronic technology have led to a new revolution in cartography. Specifically computer hardware devices such as computer screens, plotters, printers, scanners (remote and document) and analytic stereo plotters along with visualization, image processing, spatial analysis and database software, have democratized and greatly expanded the making of maps.
See also list of cartographers.
Search Encyclopedia
|
Featured Article
|