William Thurston's Elliptization Conjecture states that a closed 3-manifold[?] with finite fundamental group has a spherical geometry, i.e. has a Riemannian metric[?] of constant positive sectional curvature. Any 3-manifold with such a metric is covered by the 3-sphere. Note that this means that if the original 3-manifold had in fact a trivial fundamental group, then it is homeomorphic to the 3-sphere (via the covering map). Thus, proving the Elliptization Conjecture would prove the Poincaré conjecture as a corollary.
... Confession of Faith[?] as one of their important confessional documents.
United Reformed Church in the United Kingdom is the result of the congregational union of ...