Encyclopedia > Talk:Jacobian

  Article Content

Talk:Jacobian

Isnt' there an error in the simplification of the determinant given as example? Where is the term x3 cos(x1) gone? -- looxix 00:32 Mar 24, 2003 (UTC)

I've always heard the initial consonant pronounced as a affricate, as in "John". Michael Hardy 01:23 Mar 24, 2003 (UTC)

I originally put in the matrix here, and put in most of the structure. I did make a mistake in terminology, thou, as i see has been corrected. I defined the jacobian matrix, where the "Jacobian" per say, refers to the determinant of that matrix. My point is is that this page was originally designed to define the jacobian matrix, and i see that that definition is a stub. I have a copy of the page before it was fixed. i'm posting it in the stub for jacobian matrix. I think, then, it would be a good idea to discuss whether we might want to combine the two into one page? I'm for this. I think the ideas neeed to be presented closely together in order for fluent comprehension, and a brief and clear page describing first the jacobian matrix, and then the jacobian, would be simple to construct as well as being a better way to present the topic. Kevin Baas 2003.03.26

Why in the world do you call

<math>(x_1,\dots,x_n)</math>
a "basis" of an n-space? A basis would be something like this:
<math>\{\,(1,0,0,0,\dots,0),\,(0,1,0,0,\dots,0),\dots,\,(0,0,0,0,\dots,0,1)\,\}.</math>
(By the way, the Latin phrase "per se" doesn't have an "a" or a "y" in it.) Michael Hardy 20:36 Mar 26, 2003 (UTC)



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Thomas a Kempis

... it, reflections about death and the judgment, meditations upon the oblation of Christ, and admonitions to flee the vanities of the world. Christ himself is more ...

 
 
 
This page was created in 24 ms