Encyclopedia > Suslin's problem

  Article Content

Suslin's problem

Suslin's problem in mathematics is the following question posed by M. Suslin[?] in the early 1920s: given a non-empty totally ordered set R with the following four properties
  1. R does not have a smallest nor a largest element
  2. the order on R is dense (between any two elements there's another one)
  3. the order on R is complete, in the sense that every non-empty bounded set has a supremum and an infimum
  4. any collection of mutually disjoint non-empty open intervals in R is countable (this is also known as the "countable chain condition", ccc)
is R necessarily order-isomorphic to the real line R?

In the 1960s, it was proved that the question is undecidable from the standard axiomatic system of set theory known as ZFC: the statement can neither be proven nor disproven from those axioms.

Note that if the fourth condition above about collections of intervals is exchanged with

  • there exists a countable dense subset in R
then the answer is indeed yes: any such set R is necessarily isomorphic to R.

Any totally ordered set that is not isomorphic to R but satisfies 1) - 4) is known as a Suslin line. The existence of Suslin lines has been proven to be equivalent to the existence of Suslin trees[?]. Suslin lines exist if the additional constructibility axiom V equals L[?] is assumed.



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Grateful Dead

... American folk music forms to-date; it paid homage to previous forms, and also reflected a sense of adventure and a continuous quest for the "musical unknown"; more often ...

 
 
 
This page was created in 27.3 ms