Encyclopedia > Suslin's problem

  Article Content

Suslin's problem

Suslin's problem in mathematics is the following question posed by M. Suslin[?] in the early 1920s: given a non-empty totally ordered set R with the following four properties
  1. R does not have a smallest nor a largest element
  2. the order on R is dense (between any two elements there's another one)
  3. the order on R is complete, in the sense that every non-empty bounded set has a supremum and an infimum
  4. any collection of mutually disjoint non-empty open intervals in R is countable (this is also known as the "countable chain condition", ccc)
is R necessarily order-isomorphic to the real line R?

In the 1960s, it was proved that the question is undecidable from the standard axiomatic system of set theory known as ZFC: the statement can neither be proven nor disproven from those axioms.

Note that if the fourth condition above about collections of intervals is exchanged with

  • there exists a countable dense subset in R
then the answer is indeed yes: any such set R is necessarily isomorphic to R.

Any totally ordered set that is not isomorphic to R but satisfies 1) - 4) is known as a Suslin line. The existence of Suslin lines has been proven to be equivalent to the existence of Suslin trees[?]. Suslin lines exist if the additional constructibility axiom V equals L[?] is assumed.



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Ludvika

...  |  Falun  |  Gagnef  |  Hedemora  |  Leksand  |  LudvikaMalung  |  Mora  |  Orsa  |  ...

 
 
 
This page was created in 29.7 ms