Encyclopedia > Stress (physics)

  Article Content

Stress (physics)

In physics, the stress at a point in a material is the applied force per unit area. The stress unit is the Pascal (symbol Pa). To be exact, the stress at a point may be determined by taking the limit of the load being carried by a particular cross section, divided by that cross section, as the area of the cross section aproaches zero. In general the stress may vary from point to point, but for simple cases, such as circular cylinders with pure axial loading, the stress is constant and equal to the cross-sectional area divided by the applied load.

For instance, if we have a steel bolt with a diameter of 5 mm, it has a cross-sectional area of 2*10-5m2. Suppose that the load is 50k N, the stress (force distributed across the cross-section) is about 2.5 MPa.

That means each m2 of bolt would support 2.5 MN of the total load.

In another bolt with half the diameter, and hence a quarter the cross-sectional area, carrying the same 50 kN load, the stress will be quadrupled (10 MPa).

The ultimate tensile strength[?] of a material is the value of the stress causing the material's fracture. The yield strength[?] is the value of stress causing plastic deformation. These values are determined experimentally using the measurement procedure known as the tensile test[?].



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
242

... 2nd century - 3rd century - 4th century Decades: 190s 200s 210s 220s 230s - 240s - 250s 260s 270s 280s 290s Years: 237 238 239 240 241 - 242 - 243 ...

 
 
 
This page was created in 20.3 ms