Encyclopedia > Soil salination

  Article Content

Soil salination

Soil salination results from the accumulation of free salts to such an extent that it leads to degradation of soils and vegetation.

Salinisation is a natural process that results from:

  • high levels of salt in the soils;
  • landscape features that allow salts to become mobile (movement of water table)
  • climatic trends that favor the accumulation

Salt is a natural element of soils and water. The ions responsible for salination are : Na+, K+, Ca2+, Mg2+, Cl-, HCO3- and SO24-.

In some areas (for example in Australia), salinity is an inherent situation (enormous amounts of salts are stored in the soils).

However, human practices have increased soil salinity by changing the natural balance of the water cycle, by allowing excess recharging of groundwater[?] and accumulation through concentration.

One of the best examples for excess salination has been observed in Egypt in 1970 when the Assuan dam[?] was built. The change in the level of ground water[?] before the construction had enabled soil erosion, which lead to high concentration of salts in the water table. After the construction, the continuous high level of the water table lead to the salination of the arable land.

Salinity from drylands can occur when table water is between two to three metres of the surface of the soil. The salts from the ground water are raised by capillarity to the surface of the soil. This occurs when groundwater is saline (which is true in many areas), and is favored by land use practices allowing more rainwater to enter the aquifer than this one could accommodate (for example, the clearing of trees for agriculture is a major reason for drylands in some areas, since deep rooting of trees has been replaced by shallow rooting of annual crops).

Salinity from irrigation occurs when water is added and is not used by crops - it is essentially due to over-irrigation, inefficient water use (such as bad estimates of evapotranspiration) and poor drainage, and is also highly favored by use of saline water for irrigating agricultural crops. These practices result in over-concentration of salts.

Salinity in urban areas is often both the combination of over-irrigation and drylands. Cities are often located on drylands, leaving the rich soils for agriculture. Irrigation is also now common management in cities (gardens and recreation areas).

The consequences of salinity are

  • detrimental effects on plant growth and final yield
  • damages to infrastructure (roads, bricks, corrosion of pipes and cables)
  • reduction of water quality for users, sedimentation problems
  • soil erosion ultimately, when crops are too strongly affected by the amounts of salts.

Salinity is a very important land degradation problem. One way to prevent excess salination would be the use of humic acids[?], especially in regions where too much irrigation was practiced. In soils with excess salts, humic acids can fix anions[?] and cations[?] and eliminated them from the root regions of the plants.



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
East Marion, New York

... units at an average density of 136.8/km² (354.8/mi²). The racial makeup of the town is 95.24% White, 0.93% African American, 0.13% Native American, 0.93% Asian, ...

 
 
 
This page was created in 35.5 ms