Encyclopedia > List of Integrals (logarithmic functions)

  Article Content

List of integrals of logarithmic functions

Redirected from List of Integrals (logarithmic functions)

The following is a list of Integrals (Antiderivative functions) of logarithmic functions[?]. For a complete list of Integral functions, please see Table of Integrals and List of integrals.

Note: <math>x > 0</math> is assumed throughout this article.

<math>\int\ln x\,dx = x\ln x - x</math>

<math>\int (\ln x)^2 dx = x(\ln x)^2 - 2x\ln x + 2x</math>

<math>\int (\ln x)^n dx = x(\ln x)^n - n\int (\ln x)^{n-1} dx \qquad\mbox{(for }n\neq 1\mbox{)}</math>

<math>\int \frac{dx}{\ln x} = \ln|\ln x| + \ln x + \sum^\infty_{i=2}\frac{(\ln x)^i}{i\cdot i!}</math>

<math>\int \frac{dx}{(\ln x)^n} = -\frac{x}{(n-1)(\ln x)^{n-1}} + \frac{1}{n-1}\int\frac{dx}{(\ln x)^{n-1}} \qquad\mbox{(for }n\neq 1\mbox{)}</math>

<math>\int x^m\ln x\,dx = x^{m+1}\left(\frac{\ln x}{m+1}-\frac{1}{(m+1)^2}\right) \qquad\mbox{(for }m\neq 1\mbox{)}</math>

<math>\int x^m (\ln x)^n dx = \frac{x^{m+1}(\ln x)^n}{m+1} - \frac{n}{m+1}\int x^m (\ln x)^{n-1} dx \qquad\mbox{(for }m,n\neq 1\mbox{)}</math>

<math>\int \frac{(\ln x)^n dx}{x} = \frac{(\ln x)^{n+1}}{n+1} \qquad\mbox{(for }n\neq 1\mbox{)}</math>

<math>\int \frac{\ln x\,dx}{x^m} = -\frac{\ln x}{(m-1)x^{m-1}}-\frac{1}{(m-1)^2 x^{m-1}} \qquad\mbox{(for }m\neq 1\mbox{)}</math>

<math>\int \frac{(\ln x)^n dx}{x^m} = -\frac{(\ln x)^n}{(m-1)x^{m-1}} + \frac{n}{m-1}\int\frac{(\ln x)^{n-1} dx}{x^m} \qquad\mbox{(for }m,n\neq 1\mbox{)}</math>

<math>\int \frac{x^m dx}{(ln x)^n} = -\frac{x^{m+1}}{(n-1)(\ln x)^{n-1}} + \frac{m+1}{n-1}\int\frac{x^m dx}{(ln x)^{n-1}} \qquad\mbox{(for }n\neq 1\mbox{)}</math>

<math>\int \frac{dx}{x\ln x} = \ln|\ln x|</math>

<math>\int \frac{dx}{x^n\ln x} = \ln|\ln x| + \sum^\infty_{i=1} (-1)^i\frac{(n-1)^i(\ln x)^i}{i\cdot i!}</math>

<math>\int \frac{dx}{x (\ln x)^n} = -\frac{1}{(n-1)(\ln x)^{n-1}} \qquad\mbox{(for }n\neq 1\mbox{)}</math>

<math>\int \sin (\ln x)\,dx = \frac{x}{2}(\sin (\ln x) - \cos (\ln x))</math>

<math>\int \cos (\ln x)\,dx = \frac{x}{2}(\sin (\ln x) + \cos (\ln x))</math>



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Bullying

... negative implications, it merely designated anyone who assumed power for any period of time without a legitimate basis of authority. The first to have the title of ...

 
 
 
This page was created in 27.1 ms