Encyclopedia > List of Integrals (logarithmic functions)

  Article Content

List of integrals of logarithmic functions

Redirected from List of Integrals (logarithmic functions)

The following is a list of Integrals (Antiderivative functions) of logarithmic functions[?]. For a complete list of Integral functions, please see Table of Integrals and List of integrals.

Note: <math>x > 0</math> is assumed throughout this article.

<math>\int\ln x\,dx = x\ln x - x</math>

<math>\int (\ln x)^2 dx = x(\ln x)^2 - 2x\ln x + 2x</math>

<math>\int (\ln x)^n dx = x(\ln x)^n - n\int (\ln x)^{n-1} dx \qquad\mbox{(for }n\neq 1\mbox{)}</math>

<math>\int \frac{dx}{\ln x} = \ln|\ln x| + \ln x + \sum^\infty_{i=2}\frac{(\ln x)^i}{i\cdot i!}</math>

<math>\int \frac{dx}{(\ln x)^n} = -\frac{x}{(n-1)(\ln x)^{n-1}} + \frac{1}{n-1}\int\frac{dx}{(\ln x)^{n-1}} \qquad\mbox{(for }n\neq 1\mbox{)}</math>

<math>\int x^m\ln x\,dx = x^{m+1}\left(\frac{\ln x}{m+1}-\frac{1}{(m+1)^2}\right) \qquad\mbox{(for }m\neq 1\mbox{)}</math>

<math>\int x^m (\ln x)^n dx = \frac{x^{m+1}(\ln x)^n}{m+1} - \frac{n}{m+1}\int x^m (\ln x)^{n-1} dx \qquad\mbox{(for }m,n\neq 1\mbox{)}</math>

<math>\int \frac{(\ln x)^n dx}{x} = \frac{(\ln x)^{n+1}}{n+1} \qquad\mbox{(for }n\neq 1\mbox{)}</math>

<math>\int \frac{\ln x\,dx}{x^m} = -\frac{\ln x}{(m-1)x^{m-1}}-\frac{1}{(m-1)^2 x^{m-1}} \qquad\mbox{(for }m\neq 1\mbox{)}</math>

<math>\int \frac{(\ln x)^n dx}{x^m} = -\frac{(\ln x)^n}{(m-1)x^{m-1}} + \frac{n}{m-1}\int\frac{(\ln x)^{n-1} dx}{x^m} \qquad\mbox{(for }m,n\neq 1\mbox{)}</math>

<math>\int \frac{x^m dx}{(ln x)^n} = -\frac{x^{m+1}}{(n-1)(\ln x)^{n-1}} + \frac{m+1}{n-1}\int\frac{x^m dx}{(ln x)^{n-1}} \qquad\mbox{(for }n\neq 1\mbox{)}</math>

<math>\int \frac{dx}{x\ln x} = \ln|\ln x|</math>

<math>\int \frac{dx}{x^n\ln x} = \ln|\ln x| + \sum^\infty_{i=1} (-1)^i\frac{(n-1)^i(\ln x)^i}{i\cdot i!}</math>

<math>\int \frac{dx}{x (\ln x)^n} = -\frac{1}{(n-1)(\ln x)^{n-1}} \qquad\mbox{(for }n\neq 1\mbox{)}</math>

<math>\int \sin (\ln x)\,dx = \frac{x}{2}(\sin (\ln x) - \cos (\ln x))</math>

<math>\int \cos (\ln x)\,dx = \frac{x}{2}(\sin (\ln x) + \cos (\ln x))</math>



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Canadian Music Hall of Fame

... list of Inductees 1978 Guy Lombardo 1978 Oscar Peterson 1979 Hank Snow 1980 Paul Anka 1981 Joni Mitchell 1982 Neil Young 1983 Glenn Gould 1986 Gordon ...

 
 
 
This page was created in 30.2 ms