Encyclopedia > List of Integrals (irrational functions)

  Article Content

List of integrals of irrational functions

Redirected from List of Integrals (irrational functions)

The following is a list of Integrals (Antiderivative functions) of irrational functions[?]. For a complete list of Integral functions, please see Table of Integrals and List of integrals.

<math>\int\sqrt{a^2-x^2}dx = \frac{1}{2}\left(x\sqrt{a^2-x^2}+a^2\arcsin\frac{x}{a}\right) \qquad\mbox{(}|x|\leq|a|\mbox{)}</math>

<math>\int x\sqrt{a^2-x^2}dx = -\frac{1}{3}\sqrt{(a^2-x^2)^3} \qquad\mbox{(}|x|\leq|a|\mbox{)}</math>

<math>\int\frac{\sqrt{a^2-x^2}dx}{x} = \sqrt{a^2-x^2}-a\ln\left|\frac{a+\sqrt{a^2+x^2}}{x}\right| \qquad\mbox{(}|x|\leq|a|\mbox{)}</math>

<math>\int\frac{dx}{\sqrt{a^2-x^2}} = \arcsin\frac{x}{a} \qquad\mbox{(}|x|\leq|a|\mbox{)}</math>

<math>\int\frac{x^2dx}{\sqrt{a^2-x^2}} = -\frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}\arcsin\frac{x}{a} \qquad\mbox{(}|x|\leq|a|\mbox{)}</math>

<math>\int\sqrt{x^2+a^2}dx = \frac{1}{2}\left(x\sqrt{x^2+a^2}+a^2\,\mathrm{arsinh}\frac{x}{a}\right)</math>

<math>\int x\sqrt{x^2+a^2}dx=\sqrt{1}{3}\sqrt{(x^2+a^2)^3}</math>

<math>\int\frac{\sqrt{x^2+a^2}dx}{x} = \sqrt{x^2+a^2}-a\ln\left|\frac{a+\sqrt{x^2+a^2}}{x}\right|</math>

<math>\int\frac{dx}{\sqrt{x^2+a^2}} = \mathrm{arsinh}\frac{x}{a} = \ln\left|x+\sqrt{x^2+a^2}\right|</math>

<math>\int\frac{x\;dx}{\sqrt{x^2+a^2}} = \sqrt{x^2+a^2}</math>

<math>\int\frac{x^2\;dx}{\sqrt{x^2+a^2}} = \frac{x}{2}\sqrt{x^2+a^2}-\frac{a^2}{2}\,\mathrm{arsinh}\frac{x}{a} = \frac{x}{2}\sqrt{x^2+a^2}-\frac{a^2}{2}\ln\left|x+\sqrt{x^2+a^2}\right|</math>

<math>\int\frac{dx}{x\sqrt{x^2+a^2}} = -\frac{1}{a}\,\mathrm{arsinh}\frac{a}{x} = -\frac{1}{a}\ln\left|\frac{a+\sqrt{x^2+a^2}}{x}\right|</math>

<math>\int\sqrt{x^2-a^2}dx = \frac{1}{2}\left(x\sqrt{x^2-a^2}\mp a^2\,\mathrm{arcosh}\left|\frac{x}{a}\right|\right) \qquad\mbox{(for }|x|\ge\|a|\mbox{; }-\mbox{ for }x>0\mbox{, }+\mbox{ for }x<0\mbox{)}</math>

<math>\int x\sqrt{x^2-a^2}dx = \frac{1}{3}\sqrt{(x^2-a^2)^3} \qquad\mbox{(for }|x|\ge|a|\mbox{)}</math>

<math>\int\frac{\sqrt{x^2-a^2}dx}{x} = \sqrt{x^2-a^2} - a\arccos\frac{a}{x} \qquad\mbox{(for }|x|\ge|a|\mbox{)}</math>

<math>\int\frac{dx}{\sqrt{x^2-a^2}} = \mathrm{arcosh}\frac{x}{a} = \ln\left(|x|+\sqrt{x^2-a^2}\right) \qquad\mbox{(for }|x|>|a|\mbox{)}</math>

<math>\int\frac{x\;dx}{\sqrt{x^2-a^2}} = \sqrt{x^2-a^2} \qquad\mbox{(for }|x|>|a|\mbox{)}</math>

<math>\int\frac{x^2\;dx}{\sqrt{x^2-a^2}} = \frac{x}{2}\sqrt{x^2-a^2}+\frac{a^2}{2}\,\mathrm{arcosh}\left|\frac{x}{a}\right| = \frac{1}{2}\left(x\sqrt{x^2-a^2}+a^2\ln\left(|x|+\sqrt{x^2-a^2}\right)\right) \qquad\mbox{(for }|x|>|a|\mbox{)}</math>

<math>\int\frac{dx}{\sqrt{ax^2+bx+c}} = \frac{1}{\sqrt{a}}\ln\left|2\sqrt{a(ax^2+bx+c)}+2ax+b\right| \qquad\mbox{(for }a>0\mbox{)}</math>

<math>\int\frac{dx}{\sqrt{ax^2+bx+c}} = \frac{1}{\sqrt{a}}\,\mathrm{arsinh}\frac{2ax+b}{\sqrt{4ac-b^2}} \qquad\mbox{(for }a>0\mbox{, }4ac-b^2>0\mbox{)}</math>

<math>\int\frac{dx}{\sqrt{ax^2+bx+c}} = \frac{1}{\sqrt{a}}\ln|2ax+b| \qquad\mbox{(for }a>0\mbox{, }4ac-b^2=0\mbox{)}</math>

<math>\int\frac{dx}{\sqrt{ax^2+bx+c}} = -\frac{1}{\sqrt{-a}}\arcsin\frac{2ax+b}{\sqrt{b^2-4ac}} \qquad\mbox{(for }a<0\mbox{, }4ac-b^2<0\mbox{)}</math>

<math>\int\frac{x\;dx}{\sqrt{ax^2+bx+c}} = \frac{\sqrt{ax^2+bx+c}}{a}-\frac{b}{2a}\int\frac{dx}{\sqrt{ax^2+bx+c}}</math>



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Eurofighter

... Current orders for the participating nations are 232 for the United Kingdom, 180 for Germany, 121 for Italy, and 87 for Spain. An extensive overseas sales effort ...

 
 
 
This page was created in 32.7 ms