Encyclopedia > List of Integrals (irrational functions)

  Article Content

List of integrals of irrational functions

Redirected from List of Integrals (irrational functions)

The following is a list of Integrals (Antiderivative functions) of irrational functions[?]. For a complete list of Integral functions, please see Table of Integrals and List of integrals.

<math>\int\sqrt{a^2-x^2}dx = \frac{1}{2}\left(x\sqrt{a^2-x^2}+a^2\arcsin\frac{x}{a}\right) \qquad\mbox{(}|x|\leq|a|\mbox{)}</math>

<math>\int x\sqrt{a^2-x^2}dx = -\frac{1}{3}\sqrt{(a^2-x^2)^3} \qquad\mbox{(}|x|\leq|a|\mbox{)}</math>

<math>\int\frac{\sqrt{a^2-x^2}dx}{x} = \sqrt{a^2-x^2}-a\ln\left|\frac{a+\sqrt{a^2+x^2}}{x}\right| \qquad\mbox{(}|x|\leq|a|\mbox{)}</math>

<math>\int\frac{dx}{\sqrt{a^2-x^2}} = \arcsin\frac{x}{a} \qquad\mbox{(}|x|\leq|a|\mbox{)}</math>

<math>\int\frac{x^2dx}{\sqrt{a^2-x^2}} = -\frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}\arcsin\frac{x}{a} \qquad\mbox{(}|x|\leq|a|\mbox{)}</math>

<math>\int\sqrt{x^2+a^2}dx = \frac{1}{2}\left(x\sqrt{x^2+a^2}+a^2\,\mathrm{arsinh}\frac{x}{a}\right)</math>

<math>\int x\sqrt{x^2+a^2}dx=\sqrt{1}{3}\sqrt{(x^2+a^2)^3}</math>

<math>\int\frac{\sqrt{x^2+a^2}dx}{x} = \sqrt{x^2+a^2}-a\ln\left|\frac{a+\sqrt{x^2+a^2}}{x}\right|</math>

<math>\int\frac{dx}{\sqrt{x^2+a^2}} = \mathrm{arsinh}\frac{x}{a} = \ln\left|x+\sqrt{x^2+a^2}\right|</math>

<math>\int\frac{x\;dx}{\sqrt{x^2+a^2}} = \sqrt{x^2+a^2}</math>

<math>\int\frac{x^2\;dx}{\sqrt{x^2+a^2}} = \frac{x}{2}\sqrt{x^2+a^2}-\frac{a^2}{2}\,\mathrm{arsinh}\frac{x}{a} = \frac{x}{2}\sqrt{x^2+a^2}-\frac{a^2}{2}\ln\left|x+\sqrt{x^2+a^2}\right|</math>

<math>\int\frac{dx}{x\sqrt{x^2+a^2}} = -\frac{1}{a}\,\mathrm{arsinh}\frac{a}{x} = -\frac{1}{a}\ln\left|\frac{a+\sqrt{x^2+a^2}}{x}\right|</math>

<math>\int\sqrt{x^2-a^2}dx = \frac{1}{2}\left(x\sqrt{x^2-a^2}\mp a^2\,\mathrm{arcosh}\left|\frac{x}{a}\right|\right) \qquad\mbox{(for }|x|\ge\|a|\mbox{; }-\mbox{ for }x>0\mbox{, }+\mbox{ for }x<0\mbox{)}</math>

<math>\int x\sqrt{x^2-a^2}dx = \frac{1}{3}\sqrt{(x^2-a^2)^3} \qquad\mbox{(for }|x|\ge|a|\mbox{)}</math>

<math>\int\frac{\sqrt{x^2-a^2}dx}{x} = \sqrt{x^2-a^2} - a\arccos\frac{a}{x} \qquad\mbox{(for }|x|\ge|a|\mbox{)}</math>

<math>\int\frac{dx}{\sqrt{x^2-a^2}} = \mathrm{arcosh}\frac{x}{a} = \ln\left(|x|+\sqrt{x^2-a^2}\right) \qquad\mbox{(for }|x|>|a|\mbox{)}</math>

<math>\int\frac{x\;dx}{\sqrt{x^2-a^2}} = \sqrt{x^2-a^2} \qquad\mbox{(for }|x|>|a|\mbox{)}</math>

<math>\int\frac{x^2\;dx}{\sqrt{x^2-a^2}} = \frac{x}{2}\sqrt{x^2-a^2}+\frac{a^2}{2}\,\mathrm{arcosh}\left|\frac{x}{a}\right| = \frac{1}{2}\left(x\sqrt{x^2-a^2}+a^2\ln\left(|x|+\sqrt{x^2-a^2}\right)\right) \qquad\mbox{(for }|x|>|a|\mbox{)}</math>

<math>\int\frac{dx}{\sqrt{ax^2+bx+c}} = \frac{1}{\sqrt{a}}\ln\left|2\sqrt{a(ax^2+bx+c)}+2ax+b\right| \qquad\mbox{(for }a>0\mbox{)}</math>

<math>\int\frac{dx}{\sqrt{ax^2+bx+c}} = \frac{1}{\sqrt{a}}\,\mathrm{arsinh}\frac{2ax+b}{\sqrt{4ac-b^2}} \qquad\mbox{(for }a>0\mbox{, }4ac-b^2>0\mbox{)}</math>

<math>\int\frac{dx}{\sqrt{ax^2+bx+c}} = \frac{1}{\sqrt{a}}\ln|2ax+b| \qquad\mbox{(for }a>0\mbox{, }4ac-b^2=0\mbox{)}</math>

<math>\int\frac{dx}{\sqrt{ax^2+bx+c}} = -\frac{1}{\sqrt{-a}}\arcsin\frac{2ax+b}{\sqrt{b^2-4ac}} \qquad\mbox{(for }a<0\mbox{, }4ac-b^2<0\mbox{)}</math>

<math>\int\frac{x\;dx}{\sqrt{ax^2+bx+c}} = \frac{\sqrt{ax^2+bx+c}}{a}-\frac{b}{2a}\int\frac{dx}{\sqrt{ax^2+bx+c}}</math>



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Flapper

... might die at any moment, or worse still, get old. In addition to their irreverent behavior, flappers were known for their style, which largely emerged as a result of ...

 
 
 
This page was created in 30.6 ms