Encyclopedia > Linnik's theorem

  Article Content

Linnik's theorem

Linnik's theorem in analytic number theory answers a natural question after Dirichlet's theorem. It asserts that, if we denote p(a,d) the least prime in the arithmetic progression {a + n d}, for integer n>0, where a and d are any given positive coprime integers that 1 ≤ ad, there exist positive c and L such that:

<math> p(a,d) < c d^{L} \; .</math>

The Theorem is named after Yuri Vladimirovich Linnik[?] (1915-1972) who proved it in 1944.

As of 1992 we know that the Linnik's constant L ≤ 5.5 but we can take L=2 for almost all integers d. It is also conjectured that:

<math> p(a,d) < d \ln^{2} d \; .</math>



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Jamesport, New York

... are made up of individuals and 11.7% have someone living alone who is 65 years of age or older. The average household size is 2.41 and the average family size is 2.88. In ...

 
 
 
This page was created in 27.7 ms