Encyclopedia > Linnik's theorem

  Article Content

Linnik's theorem

Linnik's theorem in analytic number theory answers a natural question after Dirichlet's theorem. It asserts that, if we denote p(a,d) the least prime in the arithmetic progression {a + n d}, for integer n>0, where a and d are any given positive coprime integers that 1 ≤ ad, there exist positive c and L such that:

<math> p(a,d) < c d^{L} \; .</math>

The Theorem is named after Yuri Vladimirovich Linnik[?] (1915-1972) who proved it in 1944.

As of 1992 we know that the Linnik's constant L ≤ 5.5 but we can take L=2 for almost all integers d. It is also conjectured that:

<math> p(a,d) < d \ln^{2} d \; .</math>



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
242

... 2nd century - 3rd century - 4th century Decades: 190s 200s 210s 220s 230s - 240s - 250s 260s 270s 280s 290s Years: 237 238 239 240 241 - 242 - 243 244 245 ...

 
 
 
This page was created in 24.6 ms