Encyclopedia > Linearity of differentiation

  Article Content

Linearity of differentiation

Differentiation is a linear operator; this property of the derivative which follows from the sum rule in differentiation and the constant factor rule in differentiation.

Let f and g be functions. Now consider:

<math>{d \over dx}(af(x) + bg(x))</math>

By the sum rule in differentiation, this is:

<math>{d \over dx}(af(x)) + {d \over dx}(bg(x))</math>

By the constant factor rule in differentiation, this reduces to:

<math>af\ '(x) + bg'(x)</math>

Hence we have:

<math>{d \over dx}(af(x) + bg(x)) = af\ '(x) + bg'(x)</math>

Omitting the brackets[?], this is often written as:

<math>(af + bg)' = af\ '+ bg'</math>



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Wheatley Heights, New York

... size is 3.67. In the town the population is spread out with 30.3% under the age of 18, 8.1% from 18 to 24, 29.9% from 25 to 44, 23.8% from 45 to 64, and 7.9% who are 65 ...

 
 
 
This page was created in 37 ms