Encyclopedia > Linearity of differentiation

  Article Content

Linearity of differentiation

Differentiation is a linear operator; this property of the derivative which follows from the sum rule in differentiation and the constant factor rule in differentiation.

Let f and g be functions. Now consider:

<math>{d \over dx}(af(x) + bg(x))</math>

By the sum rule in differentiation, this is:

<math>{d \over dx}(af(x)) + {d \over dx}(bg(x))</math>

By the constant factor rule in differentiation, this reduces to:

<math>af\ '(x) + bg'(x)</math>

Hence we have:

<math>{d \over dx}(af(x) + bg(x)) = af\ '(x) + bg'(x)</math>

Omitting the brackets[?], this is often written as:

<math>(af + bg)' = af\ '+ bg'</math>



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Urethra

... (25-38 mm) long and opens in the vulva between the clitoris and the vaginal opening. In the human male, the urethra is about 8 inches (200 mm) long and opens at the end ...

 
 
 
This page was created in 41.9 ms