Encyclopedia > Kin selection

  Article Content

Kin selection

Kin selection was first suggested by Darwin as an explanation to the sterile castes of social insects and has later been mathematically defined by W. D. Hamilton as a mechanism for the evolution of apparently altruistic acts. Under natural selection a gene that causes itself to increase in frequency should become more common in the population. Since identical copies of genes may be carried in relatives, a gene in one organism that prompts behaviour which aids another organism carrying the same gene may become more successful provided that

r × b > c
where
r = the chance that the aided organism carries the same gene
b = the addition reproductive benefit gained by the recipient of the 'altruistic' act,
c = the reproductive cost to the individual of performing the act.

This leads to the concept that an individual should sacrifice itself in order to save "two siblings, four nephews or eight cousins," since siblings share 50% of an individual's genes, nephews 25% and cousins 12.5% (in a diploid, randomly mating and outbred[?] population).

Kin selection has been used to explain the evolution of humanity's social structure, social insects such as ants and termites, and even the evolution of multicellular animals[?].

See also:

External links



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
1904

...   Contents 1904 Centuries: 19th century - 20th century - 21st century Decades: 1850s 1860s 1870s 1880s 1890s - 1900s - 1910s 1920s 1930s 194 ...

 
 
 
This page was created in 24.9 ms