Encyclopedia > Inverse functions and differentiation

  Article Content

Inverse functions and differentiation

The inverse of a function <math>y = f(x)</math> is a function that, in some fashion, "undoes" the effect of <math>f</math> (see inverse function for a formal and detailed definition). The inverse of <math>f</math> is denoted <math>f^{-1}</math>. The statements y=f(x) and x=f-1(y) are equivalent.

Differentiation in calculus is the process of obtaining a derivative. The derivative of a function gives the slope at any point.

<math>\frac{dy}{dx} </math> denotes the derivative of the function <math>y=f(x)</math> with respect to <math>x</math>.

<math>\frac{dx}{dy} </math> denotes the derivative of the function <math>x=f(y)</math> with respect to <math>y</math>.

The two derivatives are, as the Leibnitz notation[?] suggests, reciprocal, that is

<math>\frac{dx}{dy}\,.\, \frac{dy}{dx} = 1 </math>

This is a direct consequence of the chain rule, since

<math> \frac{dx}{dy}\,.\, \frac{dy}{dx} = \frac{dx}{dx} </math>

and the derivative of <math> x </math> with respect to <math> x </math> is 1.

Examples

  • <math>y = x^2</math> (for positive <math>x</math>) has inverse <math>x = \sqrt{y}</math>.

<math> \frac{dy}{dx} = 2x
\mbox{ }\mbox{ }\mbox{ }\mbox{ }; \mbox{ }\mbox{ }\mbox{ }\mbox{ } \frac{dx}{dy} = \frac{1}{2\sqrt{y}} </math>

<math> \frac{dy}{dx}\,.\,\frac{dx}{dy} = 2x . \frac{1}{2\sqrt{y}} = \frac{2x}{2x} = 1 </math>

  • <math>y = e^x</math> has inverse <math> x = \ln (y)</math> (for positive <math>y</math>).

<math> \frac{dy}{dx} = e^x
\mbox{ }\mbox{ }\mbox{ }\mbox{ }; \mbox{ }\mbox{ }\mbox{ }\mbox{ } \frac{dx}{dy} = \frac{1}{y} </math>

<math> \frac{dy}{dx}\,.\,\frac{dx}{dy} = e^x . \frac{1}{y} = \frac{e^x}{e^x} = 1 </math>

Additional properties

  • Integrating this relationship gives

<math>{f^{-1}}(y)=\int\frac{1}{f'(x)}\,.\,{dx} + c</math>

This is only useful if the integral exists. In particular we need <math> f'(x) </math> to be non-zero across the range of integration.

It follows that functions with continuous derivative have inverses in a neighbourhood of every point where the derivative is non-zero. This need not be true if the derivative is not continuous.
 
Related Topics

calculus, inverse functions, chain rule



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
UU

... disambiguation page; that is, one that just points to other pages that might otherwise have the same name. If you followed a link here, you might want to go back and fix ...

 
 
 
This page was created in 21.6 ms