Redirected from Hubbles law
Hubble's law is the statement in astronomy that galaxies move away from each other, and that the velocity with which they recede is proportional to their distance. It leads to the picture of an expanding universe and, by extrapolating back in time, to the Big Bang theory.
The law was first formulated by Edwin Hubble in 1929. Hubble compared the distances to nearby galaxies to their redshift, found a linear relationship, and interpreted the redshift as caused by the receding velocity. His estimate of the proportionality constant, now known as Hubble's constant, was however off by a factor of about 10. Furthermore, if one takes Hubble's original observations and then use the most accurate distances and velocities currently known, one ends up with a random scatter plot with no discernable relationship between redshift and velocity. Nevertheless the relationship was confirmed by observations after Hubble.
The law can be stated as follows:
One can derive Hubble's law mathematically if one assumes that the universe expands (or shrinks) and that the universe is homogeneous, meaning that all points within it are equal.
The current value of H_{0} is estimated to be between 50 and 90 km/sec/Mpc. The value of the Hubble constant was the topic of a long and rather bitter controversy between Gérard de Vaucouleurs[?] who claimed the value was 100 and Alan Sandage[?] who claimed the value was 50. The Hubble Key Project has significantly improved the determination of the value and in May 2001 published its final estimate of 72+/8 km/sec/Mpc.
Hubble's constant is "constant" in the sense that it is believed to work for all velocities and distances right now. The value of H (usually called Hubble parameter to distiguish it from its value now, the Hubble constant) decreases over time however. If one assumes that all galaxies retain their speed relative to us and do not accelerate or deccelerate, then we have D = vt and it follows that H = 1/t, where t is the time since the Big Bang. This allows to estimate the age of the universe from H.
Based on recent observations, it is now believed that galaxies accelerate away from us, which means that H > 1/t (but still decreases over time) and the estimate 1/H_{0} (between 11 and 20 billion years) for the age of the universe is too low.
There are several additional notes to be made:
Search Encyclopedia

Featured Article
