Encyclopedia > Hilberts basis theorem

  Article Content

Hilbert's basis theorem

Redirected from Hilberts basis theorem

Hilbert's basis theorem, first proved by David Hilbert in 1888, states that, if k is a field, then every ideal in the ring of multivariate polynomials k[x1, x2, ..., xn] is finitely generated. This can be translated into algebraic geometry as follows: every variety over k can be described as the set of common roots of finitely many polynomial equations.

Hilbert produced an innovative proof by contradiction using mathematical induction; his method does not give an algorithm to produce the finitely many basis polynomials for a given ideal: it only shows that they must exist. One can determine basis polynomials using the method of Gröbner bases[?].

A slightly more general statement of Hilbert's basis theorem is: if R is a left (respectively right) Noetherian ring, then the polynomial ring R[X] is also left (respectively right) Noetherian.

The Mizar project has completely formalized and automatically checked a proof of Hilbert's basis theorem in the HILBASIS file (http://www.mizar.org/JFM/Vol12/hilbasis).



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
242

... - 4th century Decades: 190s 200s 210s 220s 230s - 240s - 250s 260s 270s 280s 290s Years: 237 238 239 240 241 - 242 - 243 244 245 246 247 Events Patriarch ...

 
 
 
This page was created in 23.4 ms