A hard disk drive is a type of storage device made up of hard disk platters, a spindle, read and write heads, read and write arms, electrical motors, and integrated electronics contained inside an airtight enclosure.
|
Using rigid platters and sealing the unit allows much tighter tolerances that in a floppy disk. Consequently, hard disks can store much more data than floppy disk, and access and transmit it faster. In 2003, a typical workstation hard disk might store between 60 GB and 120 GB of data, rotate at 5400 to 10,000 rpm (revolutions per minute), and have an average transfer rate of about 30 MByte/sec.
The disk drive is a type of disk storage that stores and retrieves digital data from a planar magnetic surface. Information is written to the disk by transmitting an electromagnetic flux through an antenna or write head that is very close to a magnetically polarizable material that changes its polarization due to the flux. The information can be read back in a reverse manner, as the magnetic fields cause electrical change in the coil or read head that passes over it.
A typical hard disk drive design consists of a central axis or spindle upon which the platters spin at a constant speed. Moving along and between the platters on a common armature are the read-write heads, with one head for each platter face. The armature moves the heads radially across the platters as they spin, allowing each head access to the entirety of its platter.
The integrated electronics[?] control the movement of the read-write armature and the rotation of the disk, and perform reads and writes upon demand from the disk controller. Some modern drive electronics are capable of scheduling reads and writes efficiently across the disk, and of remapping sectors of the disk which have failed.
The sealed enclosure protects the drive internals from dust, condensation, and other sources of contamination. Any contamination of the read-write heads or disk platters can lead to a head crash—a failure of the disk in which the head scrapes across the platter surface, grinding away the thin magnetic film. Head crashes can also be caused by electronic failure, wear and tear, or poorly manufactured disks.
A hard disk is generally accessed over one of a number of bus types, including ATA (IDE, EIDE), SCSI, FireWire/IEEE 1394, and Fibre Channel. From late 2002 Serial ATA was introduced to improve upon the performance of ATA.
There are three primary factors that determine hard drive performance: seek time, latency and data transfer rate, plus several subsiduary factors:
Operating system use of hard disks hard disk drive partitioning, master boot record, drive letter assignment
addressing modes
There are two modes of addressing the data blocks on the hard disk. The older one is the CHS addressing (Cylinder-Head-Sector) and the more recent one the LBA (Logical Block Addressing). In the LBA-mode the hard disk is like an array of blocks for the programmer of an operating system. The calculation which cylinder and head to use and which sector to read is done by the firmware of the hard disk controller.
Manufacturers
Most of the world's hard disks are manufactured by a handful of firms: Seagate, Maxtor, Western Digital, Samsung[?], and the former drive manufacturing division of IBM, now sold to Hitachi. Fujitsu continue to make specialist SCSI drives but exited the mass market in 2001. Toshiba are a major maker of 2.5 inch notebook drives.
Dozens of former hard drive manufacturers have gone out of business, merged, or closed their hard drive divisions, notably Conner (now part of Seagate), Quantum (now a tape drive specialist with the hard drive division sold to Maxtor), Micropolis and JTS (both closed down), and Miniscribe (part of Maxtor).
Search Encyclopedia
|
Featured Article
|