Encyclopedia > Giant (star)

  Article Content

Red giant

Redirected from Giant (star)

A red giant is a large star of spectral class K or M which has evolved off the main sequence. They are believed to be stars of solar mass or higher which have exhausted the supply of hydrogen in their cores and started burning hydrogen in a shell outside the core. Since the source of energy is closer to the surface, the star begins to expand. This makes the star more luminous but, counterintuitively, also reduces the effective temperature[?]. This is because the radius (and hence surface area) of the star increases by a larger amount than the luminosity of the star. As a result, the star becomes larger, but cooler and redder -- hence red giant.

If the star is less than 2.5 solar masses, the addition of helium to the core by shell hydrogen burning will cause a helium flash[?] -- a rapid burst of helium burning in the core, after which the star will commence a brief period of helium burning before beginning another ascent of the red giant branch. Stars more massive than 2.5 solar masses enter the helium burning phase of their lives much more smoothly. The core helium burning phase of a star's life is called the horizontal branch[?] in metal-poor stars, so named because these stars lie on a nearly horizonal line in the Hertzsprung-Russell diagram of many star clusters. Metal-rich helium-burning stars do not lie on a horizonal branch, but instead lie in a clump (the red clump[?]) in the Hertzsprung-Russell diagram.

Stars may enter a red giant phase several times if they are capable of burning elements more massive than helium in their cores. In these cases, the star is then on the asymptotic giant branch[?].



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Christiania

... is a disambiguation page; that is, one that just points to other pages that might otherwise have the same name. If you followed a link here, you might want to go back and ...

 
 
 
This page was created in 27.8 ms