For space based application there are several configurations for a fusion drive.
One would mirror a terrestrial fusion reactor like a tokamak. The fusion plasma would be vented to provide thrust. Currently tokamaks weigh about the same as an oil tanker, so the thrust to weight ratio would seem unacceptable.
The most practical approach might eventually be a Farnsworth-Hirsch Fusor. A fusor uses inertial electrostatic confinement. Since an electron volt equals 11,604 degrees, electrostatic confinement can and has achieved fusion in large vacuum tubes. The reactors still have not broken even, but the problems may be soluble.
Fusors have three important advantages:
Another proposed configuration would resemble an orion drive using inertial fusion[?]. A small pellet of fusion fuel (with a diameter of a couple of millimeters) would be ignited by an electron beam[?], a laser or even a tiny amount of antimatter. A magnetic field would form the pusher plate. The preferred fuels would have an aneutronic[?] fusion reaction to minimize radiation. Most researchers have focused on a combination of Helium-3 and Deuterium. Helium-3 is very rare on Earth and might have to be obtained from the Moon or a gas giant.
Fusion-based bombs could (and almost certainly would) be used in an Orion design, improving efficiency substantially while a pellet based inertial fusion[?] approach has been extensively studied by the British Interplanetary Society[?] during their "Daedalus" interstellar probe design study in the 1970s.
See also: spacecraft propulsion
Search Encyclopedia
|
Featured Article
|