Encyclopedia > Erdös-Borwein constant

  Article Content

Erdös-Borwein constant

The Erdös-Borwein constant is the sum of the reciprocals of the Mersenne numbers.

By definition it is:

<math> E=\sum_{n=1}^{\infty}\frac{1}{2^n-1} \approx 1.60669 51524 15291 763... </math>

It can be proved that the following forms are equivalent to the former:

<math> E=\sum_{n=1}^{\infty}\frac{1}{2^{n^2}}\frac{2^n+1}{2^n-1} </math>

<math> E=\sum_{m=1}^{\infty}\sum_{n=1}^{\infty} \frac{1}{2^{mn}} </math>

<math> E=\sum_{n=1}^{\infty}\frac{\sigma_0(n)}{2^n} </math>

where <math>\sigma_0(n)</math> represents a multiplicative function, the number of positive divisors of the number <math>n</math>.

Paul Erdös showed that the constant E is an irrational number.



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Thomas a Kempis

... of four books and seems to have been written in meter and rime, a fact first announced by K. Hirsche in 1874. The four books are not found in all the ...

 
 
 
This page was created in 25.1 ms