Encyclopedia > Concave

  Article Content

Concave

In mathematics, a function <math>f(x)</math> is said to be concave on an interval <math>[a,b]</math> if, for all x,y in <math>[a,b]</math>.
<math>f\left(\frac{x+y}{2}\right)\geq\frac{f(x)+f(x)}{2}</math>
This is equivalent to
<math>\forall t\in[0,1],\ \ f(tx + (1-t)y) \geq tf(x) + (1-t)f(y).</math>

Additionally, <math>f(x)</math> is strictly concave if

<math>f\left(\frac{x+y}{2}\right)>\frac{f(x)+f(y)}{2}.</math>

Equivalently, <math>f(x)</math> is concave on <math>[a,b]</math> iff the function <math>-f(x)</math> is convex on every subinterval[?] of <math>[a,b]</math>.

If <math>f(x)</math> is differentiable, then <math>f(x)</math> is concave iff <math>f'(x)</math> is monotone decreasing.

If <math>f(x)</math> is twice-differentiable, then <math>f(x)</math> is concave iff <math>f(x)</math> is negative.

See also: convex function.



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Northampton, Suffolk County, New York

... As of the census of 2000, there are 468 people, 158 households, and 121 families residing in the town. The population density is 19.9/km² (51.6/mi²). There ...

 
 
 
This page was created in 26.1 ms