Encyclopedia > Concave

  Article Content

Concave

In mathematics, a function <math>f(x)</math> is said to be concave on an interval <math>[a,b]</math> if, for all x,y in <math>[a,b]</math>.
<math>f\left(\frac{x+y}{2}\right)\geq\frac{f(x)+f(x)}{2}</math>
This is equivalent to
<math>\forall t\in[0,1],\ \ f(tx + (1-t)y) \geq tf(x) + (1-t)f(y).</math>

Additionally, <math>f(x)</math> is strictly concave if

<math>f\left(\frac{x+y}{2}\right)>\frac{f(x)+f(y)}{2}.</math>

Equivalently, <math>f(x)</math> is concave on <math>[a,b]</math> iff the function <math>-f(x)</math> is convex on every subinterval[?] of <math>[a,b]</math>.

If <math>f(x)</math> is differentiable, then <math>f(x)</math> is concave iff <math>f'(x)</math> is monotone decreasing.

If <math>f(x)</math> is twice-differentiable, then <math>f(x)</math> is concave iff <math>f(x)</math> is negative.

See also: convex function.



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Canadian Charter of Rights and Freedoms

... also enjoy fundamental freedom of religion, freedom of thought[?], freedom of expression and freedom of the press, peaceful assembly[?], and freedom of association ...

 
 
 
This page was created in 33 ms