Additionally, <math>f(x)</math> is strictly concave if
Equivalently, <math>f(x)</math> is concave on <math>[a,b]</math> iff the function <math>-f(x)</math> is convex on every subinterval[?] of <math>[a,b]</math>.
If <math>f(x)</math> is differentiable, then <math>f(x)</math> is concave iff <math>f'(x)</math> is monotone decreasing.
If <math>f(x)</math> is twice-differentiable, then <math>f(x)</math> is concave iff <math>f(x)</math> is negative.
See also: convex function.
Search Encyclopedia
|
Featured Article
|