Encyclopedia > Characteristic function

  Article Content

Characteristic function

Some mathematicians use the phrase characteristic function synonymously with "indicator function". The indicator function of a subset A of a set B is the function with domain B, whose value is 1 at each point in A and 0 at each point that is in B but not in A.


In probability theory, the characteristic function of any probability distribution on the real line is given by the following formula, where X is any random variable with the distribution in question:

<math>\varphi(t)=E\left(e^{itX}\right).</math>
Here t is a real number and E denotes the expected value.

If X is a vector-valued random variable, one takes the argument t to be a vector and tX to be a dot product.

Related concepts include the moment-generating function and the probability-generating function.



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
242

...   Contents 242 Centuries: 2nd century - 3rd century - 4th century Decades: 190s 200s 210s 220s 230s - 240s - 250s 260s 270s 280s 290s Years: 237 238 ...

 
 
 
This page was created in 26.6 ms