Encyclopedia > Catalan's constant

  Article Content

Catalan's constant

Catalan's constant K, which occasionally appears in estimates in combinatorics, is defined by

<math>K = \frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + ...</math>

or equivalently

<math>K = -\int_{0}^{1} \frac{\ln(t)}{1 + t^2} \mbox{ d} t</math>

Its numerical value is approximately

K = .915 965 594 177 219 015 054 603 514 932 384 110 774 ...

It is not known whether K is rational or irrational.



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
French resistance

... group formed by Jean-Pierre Lévy[?] in Lyon in 1941. In December 1941 they began to publish Le Franc-Tireur underground newspaper. There were also members in th ...

 
 
 
This page was created in 29 ms