Encyclopedia > Bose-Einstein statistics

  Article Content

Bose-Einstein statistics

In statistical thermodynamics, Bose-Einstein statistics determines the statistical distribution of identical indistinguishable bosons over the energy states in thermal equilibrium[?].

Bose-Einstein (or B-E) statistics are closely related to Maxwell-Boltzmann statistics (M-B) and Fermi-Dirac statistics (F-D). While F-D statistics holds for fermions, M-B statistics holds for "classical particles, i.e. identical but distinguishable particules, and represents the classical or high-temperature limit of both F-D and B-E statistics.

Bosons, unlike fermions, are not subject to the Pauli exclusion principle: an unlimited number of particles may occupy the same state at the same time. This explain why, at low temperatures, bosons can behave very differently than fermions; all the particules they will tend to congregate together at the same lowest-energy state, forming what is a Bose-Einstein condensate.

B-E statistics was introduced for photons in 1920 by Bose and generalized to atoms by Einstein in 1924.

The Bose-Einstein distribution function

The distribution function f(E) is the probability that a particle is in energy state E, for B-E statistics the following hold:

<math>f_{BE}(E) = \frac{1}{A \exp({E}/{k_B T}) - 1}</math>


E is the energy
kB is Boltzmann's constant
T is absolute temperature
A is a normalization constant

All Wikipedia text is available under the terms of the GNU Free Documentation License

  Search Encyclopedia

Search over one million articles, find something about almost anything!
  Featured Article
Thomas a Kempis

... whole of it they must be supplemented by counsels for integrity, bravery and constancy in the struggle of daily existence to which the vast mass of mankind, who can not ...

This page was created in 22.9 ms