Warning: mysql_numrows(): supplied argument is not a valid MySQL result resource in /home/kidsnetau/encyclopedia_content.txt on line 11

Encyclopedia > Bertrand's postulate

  Article Content

Bertrand's postulate

Bertrand's postulate states that if n is a positive integer, then for n > 3 there always exists at least one prime number p between n and 2n-2, or in an equivalent weaker but more elegant form then for n > 1 there is always at least one prime p such that n < p < 2n.

This statement was first conjectured in 1845 by Joseph Bertrand[?] (1822-1900). His conjecture was completely proved by Pafnuty Lvovich Chebyshev (1821-1894) in 1850 and so the postulate is also called Chebyshev's theorem. Chebyshev in his proof used the Chebyshev's inequality. Bertrand himself verified his statement for all numbers in the interval [2, 3 × 106].

Srinivasa Aaiyangar Ramanujan (1887-1920) gave a simpler proof and Paul Erdös (1913-1996) in 1932 published a very simple proof where he used the function θ(x), defined as:

<math> \theta(x) \equiv \sum_{p=2}^{x} \ln (p) </math>

where px runs over primes, and the binomial coefficients.

Sylvester's theorem

Bertrand's postulate was proposed for applications to permutation groups. James Joseph Sylvester (1814-1897) generalized it with the statement: the product of k consecutive integers greater than k is divisible by a prime greater than k.

A similar and still unsolved conjecture is asking for a prime p, such that n2 < p < (n+1)2.

All Wikipedia text is available under the terms of the GNU Free Documentation License

  Search Encyclopedia

Search over one million articles, find something about almost anything!
  Featured Article
List of United States Federal Legislation

... - Robinson Patman Act 1937 - Neutrality Acts 1938 - Wheeler-Lea Act 1938 - Fair Labor Standards Act 1939 - Hatch Act 1939 - Cash and Carry 1940 - ...