BCS theory successfully explains low temperature superconductivity, the ability of certain metals at low temperatures to conduct electricity without resistance. BCS theory views superconductivity as a macroscopic quantum mechanical effect. It proposes that electrons with opposite spin can become paired, forming Cooper pairs[?].
In many superconductors, the attractive interaction between electrons (necessary for pairing) is brought about indirectly by the interaction between the electrons and the vibrating crystal lattice (the phonons). Roughly speaking the picture is the following:
An electron moving through a conductor will cause a slight increase in concentration of positive charges in the lattice around it; this increase in turn can attract another electron. In effect, the two electrons are then held together with a certain binding energy. If this binding energy is higher than the energy provided by kicks from oscillating atoms in the conductor (which is true at low temperatures), then the electron pair will stick together and resist all kicks, thus not experiencing resistance.
BCS theory was developed in 1957 by John Bardeen, Leon Cooper[?], and Robert Schrieffer[?], who received the Nobel Prize for Physics in 1972 as a result.
In 1986, "high-temperature superconductivity" was discovered (i.e. superconductivity at temperatures considerably above the previous limit of about 30 K; up to about 130 K). It is believed that at these temperatures other effects are at play; these effects are not yet fully understood. (It is possible that these unknown effects also control superconductivity even at low temperatures for some materials)
An excellent introduction to BCS theory and related areas of condensed matter physics at the graduate level is Schrieffer[?]'s book, Theory of Superconductivity, ISBN 0-7382-0120-0.
BCS theory starts from the assumption that there is some attraction between electrons, which can overcome the Coulomb repulsion. In most materials (in low temperature superconductors), this attraction is brought about indirectly by the coupling of electrons to the crystal lattice (as explained above). However, the results of BCS theory do not depend on the origin of the attractive interaction. Note that the original results of BCS (discussed below) were describing an "s-wave" superconducting state, which is the rule among low-temperature superconductors but is not realized in many "unconventional superconductors", such as the "d-wave" high-temperature superconductors. Extensions of BCS theory exist to describe these other cases, although they are insufficient to completely describe the observed features of high-temperature superconductivity.
BCS were able to give an approximation for the quantum-mechanical state of the system of (attractively interacting) electrons inside the metal. This state is now known as the "BCS state". Whereas in the normal metal electrons move independently, in the BCS state they are bound into "Cooper pairs" by the attractive interaction.
BCS have derived several important theoretical predictions that are independent of the details of the interaction (note that the quantitative predictions mentioned below hold only for sufficiently weak attraction between the electrons, which is however fulfilled for many low temperature superconductors - the so-called "weak-coupling case"). These have been confirmed in numerous experiments:
Original reference: J. Bardeen, L. N. Cooper, and J. R. Schrieffer, "Theory of Superconductivity", Physical Review 108 (5), 1175 (December 1957).
Search Encyclopedia
|
Featured Article
|