Redirected from Aerospace
The basis of most of these elements lies in theoretical mathematics, such as fluid mechanics for aerodynamics or the equations of motion for flight dynamics. However, there is also a large empirical component. Historically, this empirical component was derived from testing of scale models and prototypes, either in wind tunnels or in the free atmosphere. More recently, advances in computer technology have enabled the use of computational fluid dynamics to simulate the behavior of a vehicle, reducing time and expense.
Additionally, aerospace engineering deals with the integration of all components that constitute an aerospace vehicle (subsystems including power, communications, thermal control, life support, etc.) and its life cycle (design, manufacture, testing, operation, disposal), and as such is really a special branch of systems engineering. The operational requirements of aerospace vehicles are often extreme (temperature, pressure, radiation, velocity, life time...), leading to extraordinary challenges and solutions specific to the domain of aerospace systems engineering.
Search Encyclopedia
|
Featured Article
|