Encyclopedia > Zariski topology

  Article Content

Zariski topology

In this topology, named after Oscar Zariski, the closed sets are the sets consisting of the mutual zeros of a finite set of polynomial equations.

This definitions indicates the kind of space that can be given a Zariski topology: for example we define the Zariski topology on a n-dimensional vector space F^n over a field F, using the definition above. That this definition yields a true topology is easily verified.

It follows easily that homomorphisms are continuous and so the Zariski topology given to some finite-dimensional vector space doesn't depend on a specific basis chosen.

From here one can generalise the definition of Zariski topology to infinite-dimensional vector spaces, projective spaces, and subsets of these.



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Northwest Harbor, New York

... people, 1,181 households, and 818 families residing in the town. The population density is 81.3/km² (210.6/mi²). There are 3,008 housing units at an averag ...

 
 
 
This page was created in 36.5 ms