Encyclopedia > Third law

  Article Content

Newton's laws of motion

Redirected from Third law

The laws of motion (laws of inertia) are the three scientific laws which Isaac Newton described; regarding the motion of bodies. These laws are fundamental to classical mechanics.

Newton first defined these laws in Philosophiae Naturalis Principia Mathematica (1687) and, using his newly developed calculus, proved many results concerning "idealised" particles. In the third volume (of the text), he showed how, combined with his Law of Universal Gravitation, the laws of motion would explain Kepler's laws of planetary motion. Newton's laws were modified, in 1916, by Einstein's theory of relativity.

Newton's First Law (Law of Inertia)

  • Every object persists in its state of rest, or uniform motion (in a straight line); unless, it is compelled to change that state, by forces impressed on it.
  • A body remains at rest, or moves in a straight line (at a constant velocity), unless acted upon by a net outside force.

This means that a stationary object will remain stationary, and a moving object will continue to move (forever and in the same manner), unless a force acts upon it. In everyday life, the force of friction usually acts upon moving objects. Newton's law indicates that some force (gravity) must be acting upon the planets, as they do not travel in a straight line.

Newton's Second Law

This is expressed by the equation:

This expresses that the more force an object receives, the greater its acceleration will be; and that, the less mass an object has, the less force will be needed, to accelerate it; the more mass an object has, the more force will be required, to accelerate it. For example, the force of a nuclear explosion will acclerate a kitten more than a water buffalo; because, the kitten has less mass. This law is associated with the conservation of angular momentum.

Newton's Third Law

  • Whenever one body exerts force upon a second body, the second body exerts an equal and opposite force upon the first body.
  • For every action, there is an equal and opposite reaction.
  • Forces always come in equal pairs.

If you strike an object with a force of 200 N, then the object also strikes you (with a force of 200 N). Not only does a bullet exert force upon a target; but, the target exerts equal force upon the bullet. Not only do planets accelerate toward stars; but, stars acclerate toward planets. The reaction force has the same line of action, and is of the same type and magnitude as the original force.



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Digital Rights Management

... computer or computerized device), hence the 'digital' in DRM. In contrast to existing legal restrictions which copyright status imposes on the owner of a copy of such data, ...

 
 
 
This page was created in 34.7 ms