Redirected from TCP/IP stack
The Internet protocol suite is the set of protocols that implement the protocol stack on which the Internet runs. It is sometimes called the TCP/IP protocol suite after two of the many protocols that make up the suite: the transport protocol TCP and the internet protocol IP. The authoritative reference on this subject is RFC 1122[?], which can be found at http://www.ietf.org/rfc/rfc1122.txt.
The Internet protocol suite can be described by analogy with the OSI model, which describes the layers of a protocol stack, not all of which correspond well with Internet practice. In a protocol stack, each layer solves a set of problems involving the transmission of data. Higher layers are logically closer to the user and deal with more abstract data, relying on lower layers to translate data into forms that can eventually be physically manipulated.
The Internet model was designed as the solution to a practical engineering problem. The OSI model, on the other hand, was a more theoretical approach, and was built by committee. Therefore, the OSI model is easier to understand, but the TCP/IP model is more practical. It is helpful to have an understanding of the OSI model before learning TCP/IP, as the same principles apply, but are easier to understand in the OSI model.
|
The TCP/IP Stack There is some argument as to where the distinctions between layers are drawn; there is no one correct answer. But roughly:
7 | Application | e.g. HTTP, SMTP, SNMP, FTP, Telnet, NFS |
6 | Presentation | e.g. XDR[?], ASN.1, SMB[?], NCP[?], AFP[?] |
5 | Session | e.g. ISO 8327 / CCITT X.225, RPC, NetBIOS, ASP[?] |
4 | Transport | e.g. TCP, UDP, RTP, SPX, ATP |
3 | Network | e.g. IP, ICMP, IGMP, X.25, CLNP[?], ARP, OSPF, RIP, IPX, DDP[?] |
2 | Data Link | e.g. Ethernet, Token Ring, PPP, HDLC, Frame relay, ISDN, ATM |
1 | Physical | e.g. electricity, radio, laser |
TCP is a very "sturdy" transport mechanism, which makes sure packets arrive in order, are re-transmitted if lost, and eliminates duplicates, as well as handling "emergency" content which must be handled out of order (out-of-band[?]). TCP will attempt to deliver all data correctly in the specified sequence - this is its purpose and main advantage over UDP, but it can be a disadvantage in real-time streaming or routing applications with high layer 3 loss rates.
UDP is a lower-overhead protocol that is less sturdy. There is no attempt to verify that packets have reached their destination, and no guarantee that they will arrive in order. If the Application requires these guarantees, it must provide them itself, or use TCP. UDP is typically used for applications such as streaming media (audio and video, etc) where the time TCP requires for retransmission and re-ordering might not be available.
RTP is an attempt to provide a compromise between TCP and raw UDP. Although it uses the UDP packet format as a basis, it provides a function that is at the same protocol layer.
Feel free to add to this list: Echo, QOTD[?], Telnet, NTP, DHCP (Kind-of), Finger, IMAP, SNMP, IRC, POP, IMAPS[?], HTTPS, POPS[?], RTSP, NNTP, Gopher.
Search Encyclopedia
|
Featured Article
|