I am a Roger Penrose enthusiast, but certainly not an expert on any of the topics he discusses. However, I will share a few thoughts in the hopes that those better qualified can improve the article:
I believe that Sir Penrose was not saying that humans can solve the halting problem; on the contrary, he is saying that humans can understand why the general halting problem is undecidable, while algorithms (or formal logic)cannot establish the same impossibility. This implies that there is something in human intelligence that is beyond the capability of computers. These arguments are fleshed out in Shadows of the Mind, the sequel to The Emperor's New Mind. In Shadows he phrases his arguments in terms of Godel's revolutionary theorems that describe the limits of formal logic as a foundation for mathematical truth. SRW
My reading of Penrose differed somewhat. I saw him saying no formal logic system can solve the halting problem, but humans can, therefore humans can go beyond the power of formal logic systems. I've talked with a number of mathematicians who have read the book, and they all had the same understanding of what he was saying. If he really did make the blatant error you suggest, then we could add that to the article, but I think he made the more subtle error that I attributed to him. --LC
That's incorrect. We don't know G is true. We don't know the statement "G is unprovable" is true. All we know to be true is the statement "either G is unprovable, or this system is inconsistent". That's all we know. And we can prove that within the formal system. Goedel himself proved that using ordinary logic. Maybe this should be added to the Penrose page and the page on Goedel's incompleteness theorem. It seems to be a common misconception. --LC
It is possible to construct a sequence of formal statements G1, G2, ? , such that within the formal system each of the statements Gn is provable for every n, but such that the higher order statement ?for every n, Gn? is not provable within the system. As humans looking from outside the formal system we can see that ?for every n, Gn? is, indeed, true (has no counterexamples), even though the formal system is not strong enough to contain a proof.
Actually, we can only know that ?for every n, Gn? is either true or the axiom system is inconsistent. But, if the axiom system is inconsistent, then every statement is true (and, every statement is false). So, it seems to me that the question of consistency is not relevant to this argument that conscious knowledge transcends algorithmic behavior.
Perhaps someone could ask a logician for clarification. SRW
· Anyone who cares to think about it will agree that P is true.
· Neither P nor ~P is provable within an arbitrarily strong formal logic as consistent as the natural numbers. Equivalently, P is independent of the other axioms.
Clearly, Penrose has not entirely succeeded in providing an example of P, since not everyone accepts that his candidate P is true. In reverse, this reminds me of the Banach-Tarski paradox: Tarski is reputed to have been very disappointed that his theorem did not result in everyone rejecting the axiom of choice as an obviously useful (and true?) tool for the working mathematician.
This is fun; I haven't thought about these things for years. SRW
Search Encyclopedia
|
Featured Article
|