It is specific to inner product spaces. Hilbert spaces are complete inner product spaces. How much ink is spilled on inner product spaces that are not complete, except when writing also about spaces that are complete? Michael Hardy 20:19 Mar 12, 2003 (UTC)
Several mathematical errors were introduced into this article today. I have corrected them. Note:
Sorry for that. But the article as it stands might as well be gibberish for the non-expert reader. It needs an opening which explains in non-technical terms what one is, why it is important, what it is used for, etc. -- Tarquin 22:58 Apr 14, 2003 (UTC)
<mood> The definition is a standard part of the undergraduate-level mathematics curriculum; usually I construe "non-expert" as meaning a person with a PhD in mathematics who does not specialize in a particular research area. How about if we compromise and say "incomprehensible to non-mathematicians" (although that seems a bit exaggerated)? </mood> Michael Hardy 01:56 Apr 15, 2003 (UTC)
Search Encyclopedia
|
Featured Article
|