Encyclopedia > Talk:Local coordinate system

  Article Content

Talk:Local coordinate system

I redirected to Manifold, where the concept is explained and exclusively used. The old text didn't make any sense to me:
A commensurate relation between any one particular member P (or point[?]) of any one particular set S, and sufficiently many other members of this same S; local coordinate system lcs( P, S ).

Collectively, all local coordinate systems which have been determined for all members of all subsets of a particular set T allow to evaluate which of all subsets of this T constitute neighbourhoods, thereby to characterize the topology pertaining to this T, and to evaluate whether or not this same T constitutes amanifold.

(Synonym: chart.)

I don't know what a commensurate relation is; it's not a mathematical concept. In any even, a local coordinate system is most certainly not a relation between one point of a set and "sufficiently many" other points. The abbreviation lcs is non-standard. The second sentence is near incomprehensible. Local coordinate systems certainly do not "allow to evaluate" whether T is a manifold; a manifold is a topological spaces together with local coordinate systems.

It doesn't help that the same text can also be found at chart.

Is this a troll? AxelBoldt 02:25 Jan 5, 2003 (UTC)

As for I don't know what a commensurate relation is; it's not a mathematical concept.

I don't know which mathematical concepts you're considering; but should We not require articles, e.g. about what is and what isn't a neighbourhood, which instruct Physics as well as Mathematics?

As for Local coordinate systems certainly do not "allow to evaluate" whether T is a manifold

The reference was to

Collectively, all local coordinate systems which have been determined for all members of all subsets of a particular set [...]

The question how to evaluate whether or not a given Set is a manifold may be considered if and where manifold appears in an article.

As for In any [event], a local coordinate system is most certainly not a relation between one point of a set and "sufficiently many" other points.

As far as the notion of a relation between one point of a set and "sufficiently many" other points appears therefore comprehensible to Us, it may still prove useful. Alternative views on its name may be discussed where the notion itself appears in an article.

As for The abbreviation lcs is non-standard.

Can you please provide the Wikipedia Reference how to evaluate whether or not the abbreviation of local coordinate system to lcs conforms to standards We ought to observe. (Please consider abbreviations such as used in Talk:EPR_paradox as well.)

As for The second sentence is near incomprehensible.

Thanks for reproducing what you did comprehend nevertheless.

As for Is this a troll? AxelBoldt 02:25 Jan 5, 2003 (UTC)

Regards, Frank W ~@) R, Jan. 5, 23:33 PST.



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Jordanes

...     Contents Jordanes Jordanes or Jordanis was a 6th century historian. He was an Ostrogoth and was a notary of Gothic kings in Italy. At the ...

 
 
 
This page was created in 24.9 ms